Q-curves and the Lebesgue-Nagell equation

被引:1
|
作者
Bennett, Michael A. [1 ]
Michaud-Jacobs, Philippe [2 ]
Siksek, Samir [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Warwick, Math Inst, Coventry, W Midlands CV4 7AL, England
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2023年 / 35卷 / 02期
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Lebesgue-Nagell; Elliptic curves; Frey curve; multi-Frey; Q-curves; modularity; level-lowering; Galois representations; newforms;
D O I
10.5802/jtnb.1254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the equation x(2) - q(2k+1) = y(n), q inverted iota x, 2 vertical bar y, for integers x, q, k, y and n, with k >= 0 and n >= 3. We extend work of the first and third-named authors by finding all solutions in the cases q = 41 and q = 97. We do this by constructing a Frey-Hellegouarch Q-curve defined over the real quadratic field K = Q(root q), and using the modular method with multi-Frey techniques.
引用
收藏
页码:495 / 510
页数:16
相关论文
共 50 条