Polymer extrusion die design using a data-driven autoencoders technique

被引:4
作者
Ghnatios, Chady [1 ]
Gravot, Eloi [2 ]
Champaney, Victor [2 ]
Verdon, Nicolas [3 ]
Hascoet, Nicolas [2 ]
Chinesta, Francisco [4 ,5 ]
机构
[1] HESAM Univ, Arts & Metiers Inst Technol, Lab PIMM, CNRS,Cnam,PIMM Lab,SKF Chaire ENSAM, 151 Blvd Hop, F-75013 Paris, France
[2] HESAM Univ, Arts & Metiers Inst Technol, PIMM Lab, CNRS,Cnam, 151 Blvd Hop, F-75013 Paris, France
[3] Goodyear, Paris Def 1,Tour First,1 Sq Saisons, F-92400 Courbevoie, France
[4] ENSAM Inst Technol, ESI Grp Chair, 151 Blvd Hop, F-75013 Paris, France
[5] ENSAM Inst Technol, PIMM Lab, 151 Blvd Hop, F-75013 Paris, France
关键词
Die design; Machine learning; Artificial intelligence; Autoencoder; Data-driven modeling; NON-NEWTONIAN FLUID; FLOW;
D O I
10.1007/s12289-023-01796-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Designing extrusion dies remains a tricky issue when considering polymers. In fact, polymers exhibit strong non-Newtonian rheology that manifest in noticeable viscoelastic behaviors as well as significant normal stress differences. As a consequence, when they are pushed through a die, an important die-swelling is observed, and consequently the final geometry of the extruded profile differs significantly from the one of the die. This behavior turns the die's design into a difficult task, and its geometry must be defined in such a way that the extruded profile results in the targeted one. Numerical simulation was identified as a natural way for building and solving the inverse problem of defining the die, leading to the targeted extruded geometry. However, state-of-the-art rheological models reveal inaccuracies for the desired level of precision. In this paper, we propose a data-driven approach that, based on the accumulated experience on the extruded profiles for different dies, learns the relation enabling efficient die design.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Design of Hybrid Reconstruction Scheme for Compressible Flow Using Data-Driven Methods [J].
Salazar, A. ;
Xiao, F. .
JOURNAL OF MECHANICS, 2020, 36 (05) :675-689
[22]   Indirect Data-Driven Observer Design Using Neural Canonical Observer Structures [J].
Ecker, Lukas ;
Schoeberl, Markus .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :1706-1711
[23]   System Design for a Data-Driven and Explainable Customer Sentiment Monitor Using IoT and Enterprise Data [J].
An Nguyen ;
Foerstel, Stefan ;
Kittler, Thomas ;
Kurzyukov, Andrey ;
Schwinn, Leo ;
Zanca, Dario ;
Hipp, Tobias ;
Jun, Sun Da ;
Schrapp, Michael ;
Rothgang, Eva ;
Eskofier, Bjoern .
IEEE ACCESS, 2021, 9 :117140-117152
[24]   Data-Driven Modelling of Polyethylene Recycling under High-Temperature Extrusion [J].
Casteran, Fanny ;
Delage, Karim ;
Hascoet, Nicolas ;
Ammar, Amine ;
Chinesta, Francisco ;
Cassagnau, Philippe .
POLYMERS, 2022, 14 (04)
[25]   Data-Driven Design for Metamaterials and Multiscale Systems: A Review [J].
Lee, Doksoo ;
Chen, Wei ;
Wang, Liwei ;
Chan, Yu-Chin ;
Chen, Wei .
ADVANCED MATERIALS, 2024, 36 (08)
[26]   Latent Crossover for Data-Driven Multifidelity Topology Design [J].
Kii, Taisei ;
Yaji, Kentaro ;
Fujita, Kikuo ;
Sha, Zhenghui ;
Seepersad, Carolyn Conner .
JOURNAL OF MECHANICAL DESIGN, 2024, 146 (05)
[27]   Data-driven electrolyte design for lithium metal anodes [J].
Kim, Sang Cheol ;
Oyakhire, Solomon T. ;
Athanitis, Constantine ;
Wang, Jingyang ;
Zhang, Zewen ;
Zhang, Wenbo ;
Boyle, David T. ;
Kim, Mun Sek ;
Yu, Zhiao ;
Gao, Xin ;
Sogade, Tomi ;
Wu, Esther ;
Qin, Jian ;
Bao, Zhenan ;
Bent, Stacey F. ;
Cui, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (10)
[28]   An Audience Data-Driven Alternate Reality Storytelling Design [J].
Sun, Xiaowen ;
Calderon, Daniel Gilman ;
Subbaraman, Blair ;
Burke, Jeffrey A. .
CULTURE AND COMPUTING, C&C 2022, 2022, 13324 :149-166
[29]   Design of data-driven model for the pressurizer system in nuclear power plants using a TSK fuzzy neural network [J].
Mahmoud, Tarek A. ;
Sheta, Amal A. ;
Fikry, Refaat M. ;
Ali, Elsayed H. ;
El-Araby, Sayed M. ;
Mahmoud, Mohammed I. .
NUCLEAR ENGINEERING AND DESIGN, 2022, 399
[30]   Data-driven design of eutectic high entropy alloys [J].
Chen, Zhaoqi ;
Yang, Yong .
JOURNAL OF MATERIALS INFORMATICS, 2023, 3 (02)