An approach for integrating droplet generation and detection in digital polymerase chain reaction applications based on a bifunctional microfluidic cross-structure

被引:5
作者
Wang, Jinxian [1 ,2 ]
Lyu, Xin [2 ]
Zhang, Xiaoliang [1 ,2 ]
Wang, Shun [2 ]
Zeng, Wen [4 ]
Yang, Tianhang [2 ]
Wang, Bidou [1 ,2 ,3 ]
Luo, Gangyin [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn Suzhou, Div Life Sci & Med, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215163, Peoples R China
[3] Suzhou ZhongKe Med Device Ind Dev Co Ltd, Suzhou 215163, Peoples R China
[4] Northwestern Polytech Univ, Sch Mech Engn, Key Lab Micro & Nano Syst Aerosp, Minist Educ, Xian 710072, Peoples R China
关键词
Digital PCR; Microfluidics; Bifunctional cross-structure; Flow fluorescence cytometry; Micro droplet; Miniaturization; PCR; SYSTEM;
D O I
10.1016/j.talanta.2023.125240
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Digital polymerase chain reaction (dPCR) is an approach for absolute nucleic acid quantification with high sensitivity. Although several successful commercial dPCR devices have been developed to date, further miniaturizing device dimensions, decreasing cross-contamination, and improving automation level are still research highlights. In this study, we developed a fully contamination-free dPCR detection chip with fluorescence flow cytometry and micro droplet approach. A bifunctional cross-structure (BFCS) was designed to realize monodisperse sample droplet generation in forward flow and droplet detection in backward flow with simple pneumatic control and fixed chip position. In order to improve droplet detection efficiency and accuracy, droplets morphology and sequence pattern during microfluidic droplet generation and backward flow droplet detection at the same cross-structure were observed and analyzed under different pneumatic pressures. In addition, during backward flow droplet detection, an optimized declination angle of the chip was applied to increase droplet reflux rates. For the validation of PCR performance, temperature changing processes during PCR cycles were achieved by heating the monodispersed droplet array with a customized PCR amplification device. The fluorescence signal of each droplet right after passing the cross-structure was excitated and detected. The absolute quantification ability of our integrated dPCR microfluidic chip utilizing flow fluorescence cytometry was tested and verified with Influenza A virus gene (from 7.5 copies/mu L to 30000 copies/mu L). Thus, our platform provides a novel and integrated approach for ddPCR analysis.
引用
收藏
页数:10
相关论文
共 25 条
[1]   A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes [J].
Bian, Xiaojun ;
Jing, Fengxiang ;
Li, Gang ;
Fan, Xiaoyun ;
Jia, Chunping ;
Zhou, Hongbo ;
Jin, Qinghui ;
Zhao, Jianlong .
BIOSENSORS & BIOELECTRONICS, 2015, 74 :770-777
[2]   Capillary-based integrated digital PCR in picoliter droplets [J].
Chen, Jinyu ;
Luo, Zhaofeng ;
Li, Lin ;
He, Jinlong ;
Li, Luoquan ;
Zhu, Jianwei ;
Wu, Ping ;
He, Liqun .
LAB ON A CHIP, 2018, 18 (03) :412-421
[3]   Multiplexed digital polymerase chain reaction as a powerful diagnostic tool [J].
Ganova, Martina ;
Zhang, Haoqing ;
Zhu, Hanliang ;
Korabecna, Marie ;
Neuzil, Pavel .
BIOSENSORS & BIOELECTRONICS, 2021, 181 (181)
[4]   Rapid In Situ Photoimmobilization of a Planar Droplet Array for Digital PCR [J].
He, Yu ;
Yin, Juxin ;
Wu, Wenshuai ;
Liang, Hongxiao ;
Zhu, Futianchun ;
Mu, Ying ;
Fan, Hongliang ;
Zhang, Tao .
ANALYTICAL CHEMISTRY, 2020, 92 (12) :8530-8535
[5]  
Helen H.E., 2022, Sci. Rep., V5104, DOI [10.1038/s41598-022-09240, DOI 10.1038/S41598-022-09240]
[6]   High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number [J].
Hindson, Benjamin J. ;
Ness, Kevin D. ;
Masquelier, Donald A. ;
Belgrader, Phillip ;
Heredia, Nicholas J. ;
Makarewicz, Anthony J. ;
Bright, Isaac J. ;
Lucero, Michael Y. ;
Hiddessen, Amy L. ;
Legler, Tina C. ;
Kitano, Tyler K. ;
Hodel, Michael R. ;
Petersen, Jonathan F. ;
Wyatt, Paul W. ;
Steenblock, Erin R. ;
Shah, Pallavi H. ;
Bousse, Luc J. ;
Troup, Camille B. ;
Mellen, Jeffrey C. ;
Wittmann, Dean K. ;
Erndt, Nicholas G. ;
Cauley, Thomas H. ;
Koehler, Ryan T. ;
So, Austin P. ;
Dube, Simant ;
Rose, Klint A. ;
Montesclaros, Luz ;
Wang, Shenglong ;
Stumbo, David P. ;
Hodges, Shawn P. ;
Romine, Steven ;
Milanovich, Fred P. ;
White, Helen E. ;
Regan, John F. ;
Karlin-Neumann, George A. ;
Hindson, Christopher M. ;
Saxonov, Serge ;
Colston, Bill W. .
ANALYTICAL CHEMISTRY, 2011, 83 (22) :8604-8610
[7]  
Honghui Mu, 2021, Journal of Physics: Conference Series, V1881, DOI 10.1088/1742-6596/1881/2/022031
[8]   Droplet-based digital PCR (ddPCR) and its applications [J].
Hou, Ying ;
Chen, Shulang ;
Zheng, Yajing ;
Zheng, Xiaonan ;
Lin, Jin-Ming .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 158
[9]   Versatile digital polymerase chain reaction chip design, fabrication, and image processing [J].
Li, Huanan ;
Zhang, Haoqing ;
Xu, Ying ;
Tureckova, Alzbeta ;
Zahradnik, Pavel ;
Chang, Honglong ;
Neuzil, Pavel .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 283 :677-684
[10]   Development and Application of Digital PCR Technology [J].
Li, Huitiao ;
Pan, Jianzhang ;
Fang, Qun .
PROGRESS IN CHEMISTRY, 2020, 32 (05) :581-593