AlphaPeptStats: an open-source Python']Python package for automated and scalable statistical analysis of mass spectrometry-based proteomics

被引:5
作者
Krismer, Elena [1 ]
Bludau, Isabell [2 ]
Strauss, Maximilian T. [1 ]
Mann, Matthias [1 ,2 ]
机构
[1] Univ Copenhagen, Novo Nordisk Fdn Ctr Prot Res, Fac Hlth Sci, Dept Clin Prote, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
[2] Max Planck Inst Biochem, Dept Prote & Signal Transduct, D-82152 Martinsried, Germany
关键词
PEPTIDE IDENTIFICATION; ULTRAFAST; SOFTWARE; PLATFORM;
D O I
10.1093/bioinformatics/btad461
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The widespread application of mass spectrometry (MS)-based proteomics in biomedical research increasingly requires robust, transparent, and streamlined solutions to extract statistically reliable insights. We have designed and implemented AlphaPeptStats, an inclusive Python package with currently with broad functionalities for normalization, imputation, visualization, and statistical analysis of label-free proteomics data. It modularly builds on the established stack of Python scientific libraries and is accompanied by a rigorous testing framework with 98% test coverage. It imports the output of a range of popular search engines. Data can be filtered and normalized according to user specifications. At its heart, AlphaPeptStats provides a wide range of robust statistical algorithms such as t-tests, analysis of variance, principal component analysis, hierarchical clustering, and multiple covariate analysis-all in an automatable manner. Data visualization capabilities include heat maps, volcano plots, and scatter plots in publication-ready format. AlphaPeptStats advances proteomic research through its robust tools that enable researchers to manually or automatically explore complex datasets to identify interesting patterns and outliers. Availability and implementation: AlphaPeptStats is implemented in Python and part of the AlphaPept framework. It is released under a permissive Apache license. The source code and one-click installers are freely available and on GitHub at https://github.com/MannLabs/ alphapeptstats.
引用
收藏
页数:4
相关论文
共 34 条
[1]   Mass-spectrometric exploration of proteome structure and function [J].
Aebersold, Ruedi ;
Mann, Matthias .
NATURE, 2016, 537 (7620) :347-355
[2]   Proline: an efficient and user-friendly software suite for large-scale proteomics [J].
Bouyssie, David ;
Hesse, Anne-Marie ;
Mouton-Barbosa, Emmanuelle ;
Rompais, Magali ;
Macron, Charlotte ;
Carapito, Christine ;
de Peredo, Anne Gonzalez ;
Coute, Yohann ;
Dupierris, Veronique ;
Burel, Alexandre ;
Menetrey, Jean-Philippe ;
Kalaitzakis, Andrea ;
Poisat, Julie ;
Romdhani, Aymen ;
Burlet-Schiltz, Odile ;
Cianferani, Sarah ;
Garin, Jerome ;
Bruley, Christophe .
BIOINFORMATICS, 2020, 36 (10) :3148-3155
[3]   Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues [J].
Bruderer, Roland ;
Bernhardt, Oliver M. ;
Gandhi, Tejas ;
Miladinovic, Sasa M. ;
Cheng, Lin-Yang ;
Messner, Simon ;
Ehrenberger, Tobias ;
Zanotelli, Vito ;
Butscheid, Yulia ;
Escher, Claudia ;
Vitek, Olga ;
Rinner, Oliver ;
Reiter, Lukas .
MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (05) :1400-1410
[4]   MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments [J].
Choi, Meena ;
Chang, Ching-Yun ;
Clough, Timothy ;
Broudy, Daniel ;
Killeen, Trevor ;
MacLean, Brendan ;
Vitek, Olga .
BIOINFORMATICS, 2014, 30 (17) :2524-2526
[5]   MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification [J].
Cox, Juergen ;
Mann, Matthias .
NATURE BIOTECHNOLOGY, 2008, 26 (12) :1367-1372
[6]   Philosopher: a versatile toolkit for shotgun proteomics data analysis [J].
da Veiga Leprevost, Felipe ;
Haynes, Sarah E. ;
Avtonomov, Dmitry M. ;
Chang, Hui-Yin ;
Shanmugam, Avinash K. ;
Mellacheruvu, Dattatreya ;
Kong, Andy T. ;
Nesvizhskii, Alexey I. .
NATURE METHODS, 2020, 17 (09) :869-870
[7]   DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput [J].
Demichev, Vadim ;
Messner, Christoph B. ;
Vernardis, Spyros I. ;
Lilley, Kathryn S. ;
Ralser, Markus .
NATURE METHODS, 2020, 17 (01) :41-+
[8]   A guided tour of the Trans-Proteomic Pipeline [J].
Deutsch, Eric W. ;
Mendoza, Luis ;
Shteynberg, David ;
Farrah, Terry ;
Lam, Henry ;
Tasman, Natalie ;
Sun, Zhi ;
Nilsson, Erik ;
Pratt, Brian ;
Prazen, Bryan ;
Eng, Jimmy K. ;
Martin, Daniel B. ;
Nesvizhskii, Alexey I. ;
Aebersold, Ruedi .
PROTEOMICS, 2010, 10 (06) :1150-1159
[9]   Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics [J].
Frankenfield, Ashley M. ;
Ni, Jiawei ;
Ahmed, Mustafa ;
Hao, Ling .
JOURNAL OF PROTEOME RESEARCH, 2022, 21 (09) :2104-2113
[10]   Pyteomics-a Python']Python Framework for Exploratory Data Analysis and Rapid Software Prototyping in Proteomics [J].
Goloborodko, Anton A. ;
Levitsky, Lev I. ;
Ivanov, Mark V. ;
Gorshkov, Mikhail V. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2013, 24 (02) :301-304