LIOUVILLE THEOREM FOR HARMONIC MAPS FROM RIEMANNIAN MANIFOLD WITH COMPACT BOUNDARY

被引:0
|
作者
Sun, Jun [1 ,2 ]
Zhu, Xiaobao [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
[3] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
关键词
Liouville theorem; gradient estimate; harmonic maps; RICCI CURVATURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we will provide a gradient estimate for harmonic maps from a complete noncompact Riemannian manifold with compact boundary (which we call "Kasue manifold") into a simply connected complete Riemannian manifold with non-positive sectional curvature. As a consequence, we can obtain a Liouville theorem. We will also show the nonexistence of positive solutions to some linear elliptic equations on Kasue manifolds.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 50 条
  • [41] A LIOUVILLE THEOREM FOR α-HARMONIC FUNCTIONS IN R+n
    Zhang, Lizhi
    Li, Congming
    Chen, Wenxiong
    Cheng, Tingzhi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (03) : 1721 - 1736
  • [42] Liouville Theorems for F-Harmonic Maps and Their Applications
    Dong, Yuxin
    Lin, Hezi
    Yang, Guilin
    RESULTS IN MATHEMATICS, 2016, 69 (1-2) : 105 - 127
  • [43] Liouville Theorems for F-Harmonic Maps and Their Applications
    Yuxin Dong
    Hezi Lin
    Guilin Yang
    Results in Mathematics, 2016, 69 : 105 - 127
  • [44] Uniqueness and Liouville Properties of Subelliptic Harmonic Maps with Potential
    Luo, Han
    Yang, Guilin
    RESULTS IN MATHEMATICS, 2024, 79 (08)
  • [45] Harmonic maps between pseudo-Riemannian surfaces
    Fotiadis, A.
    Daskaloyannis, C.
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 206
  • [46] Harmonic maps into sub-Riemannian Lie groups
    Grong, Erlend
    Markina, Irina
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (03): : 515 - 532
  • [47] A Note on the Infimum of Energy of Unit Vector Fields on a Compact Riemannian Manifold
    Giovanni Nunes
    Jaime Ripoll
    Journal of Geometric Analysis, 2008, 18 : 1088 - 1097
  • [48] A compactness theorem of n-harmonic maps
    Wang, CY
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (04): : 509 - 519
  • [49] A nonexistence theorem for proper biharmonic maps into general Riemannian manifolds
    Branding, Volker
    Luo, Yong
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 148
  • [50] A finiteness theorem for harmonic maps into Hilbert Grassmannians
    Gomez, RP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) : 1741 - 1753