LIOUVILLE THEOREM FOR HARMONIC MAPS FROM RIEMANNIAN MANIFOLD WITH COMPACT BOUNDARY

被引:0
|
作者
Sun, Jun [1 ,2 ]
Zhu, Xiaobao [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
[3] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
关键词
Liouville theorem; gradient estimate; harmonic maps; RICCI CURVATURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we will provide a gradient estimate for harmonic maps from a complete noncompact Riemannian manifold with compact boundary (which we call "Kasue manifold") into a simply connected complete Riemannian manifold with non-positive sectional curvature. As a consequence, we can obtain a Liouville theorem. We will also show the nonexistence of positive solutions to some linear elliptic equations on Kasue manifolds.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 50 条
  • [31] The rigidity theorem for harmonic maps from Berwald manifolds
    Li, Jintang
    Zhang, Jianfeng
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (11-12) : 1394 - 1404
  • [32] Complete harmonic stable minimal hypersurfaces in a Riemannian manifold
    Cheng, Qing-Ming
    Suh, Young Jin
    MONATSHEFTE FUR MATHEMATIK, 2008, 154 (02): : 121 - 134
  • [33] Energy estimates and Liouville theorems for harmonic maps
    Rigoli, M
    Setti, AG
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (03) : 413 - 448
  • [34] Existence and Liouville theorems for V -harmonic maps from complete manifolds
    Qun Chen
    Jürgen Jost
    Hongbing Qiu
    Annals of Global Analysis and Geometry, 2012, 42 : 565 - 584
  • [35] Computing harmonic maps between Riemannian manifolds
    Gaster, Jonah
    Loustau, Brice
    Monsaingeon, Leonard
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 531 - 580
  • [36] Biharmonic maps into a Riemannian manifold of non-positive curvature
    Nakauchi, Nobumitsu
    Urakawa, Hajime
    Gudmundsson, Sigmundur
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 263 - 272
  • [37] A structure theorem for polyharmonic maps between Riemannian manifolds
    Branding, Volker
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 273 : 14 - 39
  • [38] Liouville Type Theorems Of Harmonic Maps For Finsler Manifolds
    Li, Jintang
    Qiu, Chunhui
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (01)
  • [39] Monotonicity formulae and Liouville theorems of harmonic maps with potential
    Lin, Hezi
    Yang, Guilin
    Ren, Yibin
    Chong, Tian
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (09) : 1939 - 1948
  • [40] Existence and Liouville theorems for V-harmonic maps from complete manifolds
    Chen, Qun
    Jost, Juergen
    Qiu, Hongbing
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 42 (04) : 565 - 584