LIOUVILLE THEOREM FOR HARMONIC MAPS FROM RIEMANNIAN MANIFOLD WITH COMPACT BOUNDARY

被引:0
|
作者
Sun, Jun [1 ,2 ]
Zhu, Xiaobao [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
[3] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
关键词
Liouville theorem; gradient estimate; harmonic maps; RICCI CURVATURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we will provide a gradient estimate for harmonic maps from a complete noncompact Riemannian manifold with compact boundary (which we call "Kasue manifold") into a simply connected complete Riemannian manifold with non-positive sectional curvature. As a consequence, we can obtain a Liouville theorem. We will also show the nonexistence of positive solutions to some linear elliptic equations on Kasue manifolds.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 50 条
  • [21] Liouville theorems of subelliptic harmonic maps
    Gao, Liu
    Lu, Lingen
    Yang, Guilin
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (02) : 293 - 307
  • [22] A CHARACTERIZATION OF HARMONIC SECTIONS AND A LIOUVILLE THEOREM
    Stelmastchuk, Simao
    ARCHIVUM MATHEMATICUM, 2012, 48 (02): : 149 - 162
  • [23] Liouville theorems of subelliptic harmonic maps
    Liu Gao
    Lingen Lu
    Guilin Yang
    Annals of Global Analysis and Geometry, 2022, 61 : 293 - 307
  • [24] Liouville-type theorems for biharmonic maps between Riemannian manifolds
    Baird, Paul
    Fardoun, Ali
    Ouakkas, Seddik
    ADVANCES IN CALCULUS OF VARIATIONS, 2010, 3 (01) : 49 - 68
  • [25] A Liouville Theorem for Superlinear Heat Equations on Riemannian Manifolds
    Daniele Castorina
    Carlo Mantegazza
    Berardino Sciunzi
    Milan Journal of Mathematics, 2019, 87 : 303 - 313
  • [26] A Liouville Theorem for Superlinear Heat Equations on Riemannian Manifolds
    Castorina, Daniele
    Mantegazza, Carlo
    Sciunzi, Berardino
    MILAN JOURNAL OF MATHEMATICS, 2019, 87 (02) : 303 - 313
  • [27] Liouville theorem and coupling on negatively curved Riemannian manifolds
    Wang, FY
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 100 : 27 - 39
  • [28] Gradient estimates and Liouville theorems for Dirac-harmonic maps
    Chen, Qun
    Jost, Juergen
    Sun, Linlin
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 : 66 - 78
  • [29] LIOUVILLE THEOREMS FOR f-HARMONIC MAPS INTO HADAMARD SPACES
    Hua, Bobo
    Liu, Shiping
    Xia, Chao
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 290 (02) : 381 - 402
  • [30] Gradient Estimate and Liouville Theorems for p-Harmonic Maps
    Yuxin Dong
    Hezi Lin
    The Journal of Geometric Analysis, 2021, 31 : 8318 - 8333