Multivariate mix-GEE models for longitudinal data with multiple outcomes
被引:1
|
作者:
Liang, Chunhui
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, KLAS, Changchun, Peoples R China
Northeast Normal Univ, Sch Math & Stat, Changchun, Peoples R ChinaNortheast Normal Univ, KLAS, Changchun, Peoples R China
Liang, Chunhui
[1
,2
]
Ma, Wenqing
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, KLAS, Changchun, Peoples R China
Northeast Normal Univ, Sch Math & Stat, Changchun, Peoples R ChinaNortheast Normal Univ, KLAS, Changchun, Peoples R China
Ma, Wenqing
[1
,2
]
Xing, Yanchun
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ Finance & Econ, Sch Stat, Changchun, Peoples R ChinaNortheast Normal Univ, KLAS, Changchun, Peoples R China
Xing, Yanchun
[3
]
机构:
[1] Northeast Normal Univ, KLAS, Changchun, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun, Peoples R China
[3] Jilin Univ Finance & Econ, Sch Stat, Changchun, Peoples R China
Multivariate longitudinal studies often involve two or more outcomes of interest mea-sured repeatedly across time for each subject. A main challenge in the analysis of such data is the complex correlation structure. Appropriate modeling of the covariance matrix can provide more efficient parameter estimators. In this paper, multivariate finite mixture models are built for the working correlation matrix of the generalized estimating equations (GEE). A new procedure is proposed to estimate the parameters while ensuring the positive definiteness of the estimated working correlation matrix. Moreover, the consistency and the asymptotic normality of the parameter estimates are derived theoretically. Furthermore, if data are from a Gaussian mixture model, the estimators can be proved to be asymptotically efficient. In addition, the proposed method is illustrated through several simulation studies and a real data example of transportation safety.& COPY; 2023 Elsevier Inc. All rights reserved.
机构:
Shanghai Normal Univ, Coll Math & Sci, Shanghai, Peoples R China
Huaiyin Inst Technol, Dept Math & Phys, Huaian, Jiangsu, Peoples R ChinaShanghai Normal Univ, Coll Math & Sci, Shanghai, Peoples R China
Jiang, Hong-Yan
Yue, Rong-Xian
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Coll Math & Sci, Shanghai, Peoples R China
Shanghai Univ, Sci Comp Key Lab, Shanghai, Peoples R ChinaShanghai Normal Univ, Coll Math & Sci, Shanghai, Peoples R China
Yue, Rong-Xian
Zhou, Xiao-Dong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R ChinaShanghai Normal Univ, Coll Math & Sci, Shanghai, Peoples R China
机构:
Univ Kentucky, Coll Publ Hlth, Dept Biostat, 725 Rose St, Lexington, KY 40536 USAUniv Kentucky, Coll Publ Hlth, Dept Biostat, 725 Rose St, Lexington, KY 40536 USA
Westgate, Philip M.
West, Brady T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Survey Res Ctr, Inst Social Res, Ann Arbor, MI 48109 USAUniv Kentucky, Coll Publ Hlth, Dept Biostat, 725 Rose St, Lexington, KY 40536 USA
机构:
Department of Statistical Science, University College London, Gower St., LondonDepartment of Statistical Science, University College London, Gower St., London
O’Keeffe A.G.
Farewell D.M.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Primary Care and Public Health, Cardiff University School of Medicine, Neuadd Meirionnydd, Heath Park, CardiffDepartment of Statistical Science, University College London, Gower St., London
Farewell D.M.
Tom B.D.M.
论文数: 0引用数: 0
h-index: 0
机构:
MRC Biostatistics Unit, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, CambridgeDepartment of Statistical Science, University College London, Gower St., London
Tom B.D.M.
Farewell V.T.
论文数: 0引用数: 0
h-index: 0
机构:
MRC Biostatistics Unit, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, CambridgeDepartment of Statistical Science, University College London, Gower St., London