Multivariate mix-GEE models for longitudinal data with multiple outcomes

被引:1
|
作者
Liang, Chunhui [1 ,2 ]
Ma, Wenqing [1 ,2 ]
Xing, Yanchun [3 ]
机构
[1] Northeast Normal Univ, KLAS, Changchun, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun, Peoples R China
[3] Jilin Univ Finance & Econ, Sch Stat, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized estimating equations; Longitudinal data; Multiple responses; Multivariate finite mixture models; GENERALIZED ESTIMATING EQUATIONS; MAXIMUM-LIKELIHOOD-ESTIMATION; QUASI-LEAST SQUARES; LINEAR-MODELS; EFFICIENCY; BINARY;
D O I
10.1016/j.jmva.2023.105203
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate longitudinal studies often involve two or more outcomes of interest mea-sured repeatedly across time for each subject. A main challenge in the analysis of such data is the complex correlation structure. Appropriate modeling of the covariance matrix can provide more efficient parameter estimators. In this paper, multivariate finite mixture models are built for the working correlation matrix of the generalized estimating equations (GEE). A new procedure is proposed to estimate the parameters while ensuring the positive definiteness of the estimated working correlation matrix. Moreover, the consistency and the asymptotic normality of the parameter estimates are derived theoretically. Furthermore, if data are from a Gaussian mixture model, the estimators can be proved to be asymptotically efficient. In addition, the proposed method is illustrated through several simulation studies and a real data example of transportation safety.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Weighted estimating equation: modified GEE in longitudinal data analysis
    Tianqing Liu
    Zhidong Bai
    Baoxue Zhang
    Frontiers of Mathematics in China, 2014, 9 : 329 - 353
  • [22] On the use of working correlation matrices in the GEE approach for longitudinal data
    Park, T
    Shin, DY
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1999, 28 (04) : 1011 - 1029
  • [23] Unconstrained models for the covariance structure of multivariate longitudinal data
    Kim, Chulmin
    Zimmerman, Dale L.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 107 : 104 - 118
  • [24] Nonlinear latent curve models for multivariate longitudinal data
    Blozis, Shelley A.
    Conger, Katherine J.
    Harring, Jeffrey R.
    INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT, 2007, 31 (04) : 340 - 346
  • [25] Weighted estimating equation: modified GEE in longitudinal data analysis
    Liu, Tianqing
    Bai, Zhidong
    Zhang, Baoxue
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (02) : 329 - 353
  • [26] Estimation in multivariate t linear mixed models for longitudinal data with multiple outputs: Application to PBCseq data analysis
    Taavoni, Mozhgan
    Arashi, Mohammad
    BIOMETRICAL JOURNAL, 2022, 64 (03) : 539 - 556
  • [27] Quadratic inference functions in marginal models for longitudinal data
    Song, Peter X. -K.
    Hang, Zhichang
    Park, Eunjoo
    Qu, Annie
    STATISTICS IN MEDICINE, 2009, 28 (29) : 3683 - 3696
  • [28] Asymptotics of the general GEE estimator for high-dimensional longitudinal data
    Chen, Xianbin
    Yin, Juliang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (14) : 5041 - 5056
  • [29] A Grouped GEE Framework for Quantile Regression in Heterogeneous Longitudinal Data Analysis
    Xu, Litian
    Huang, Shiwei
    Chen, Yu
    STAT, 2025, 14 (02):
  • [30] Semiparametric Bayesian joint models of multivariate longitudinal and survival data
    Tang, Nian-Sheng
    Tang, An-Min
    Pan, Dong-Dong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 113 - 129