Multivariate mix-GEE models for longitudinal data with multiple outcomes

被引:1
|
作者
Liang, Chunhui [1 ,2 ]
Ma, Wenqing [1 ,2 ]
Xing, Yanchun [3 ]
机构
[1] Northeast Normal Univ, KLAS, Changchun, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun, Peoples R China
[3] Jilin Univ Finance & Econ, Sch Stat, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized estimating equations; Longitudinal data; Multiple responses; Multivariate finite mixture models; GENERALIZED ESTIMATING EQUATIONS; MAXIMUM-LIKELIHOOD-ESTIMATION; QUASI-LEAST SQUARES; LINEAR-MODELS; EFFICIENCY; BINARY;
D O I
10.1016/j.jmva.2023.105203
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate longitudinal studies often involve two or more outcomes of interest mea-sured repeatedly across time for each subject. A main challenge in the analysis of such data is the complex correlation structure. Appropriate modeling of the covariance matrix can provide more efficient parameter estimators. In this paper, multivariate finite mixture models are built for the working correlation matrix of the generalized estimating equations (GEE). A new procedure is proposed to estimate the parameters while ensuring the positive definiteness of the estimated working correlation matrix. Moreover, the consistency and the asymptotic normality of the parameter estimates are derived theoretically. Furthermore, if data are from a Gaussian mixture model, the estimators can be proved to be asymptotically efficient. In addition, the proposed method is illustrated through several simulation studies and a real data example of transportation safety.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A methodology for improving efficiency estimation based on conditional mix-GEE models in longitudinal studies
    Xing, Yanchun
    Ma, Wenqing
    Liang, Chunhui
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (01) : 254 - 265
  • [2] Conditional mix-GEE models for longitudinal data with unspecified random-effects distributions
    Xing, Yanchun
    Xu, Lili
    Ma, Wenqing
    Zhu, Zhichuan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (04) : 862 - 876
  • [3] Bias in GEE estimates from misspecified models for longitudinal data
    Emond, MJ
    Ritz, J
    Oakes, D
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (01) : 15 - 32
  • [4] The analysis of multivariate longitudinal data using multivariate marginal models
    Cho, Hyunkeun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 481 - 491
  • [5] Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method
    Leung, Denis H. Y.
    Wang, You-Gan
    Zhu, Min
    BIOSTATISTICS, 2009, 10 (03) : 436 - 445
  • [6] GEE-Assisted Variable Selection for Latent Variable Models with Multivariate Binary Data
    Hui, Francis K. C.
    Muller, Samuel
    Welsh, A. H.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 1252 - 1263
  • [7] Smooth-threshold GEE variable selection for varying coefficient partially linear models with longitudinal data
    Tian, Ruiqin
    Xue, Liugen
    Hu, Yuping
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (03) : 419 - 431
  • [8] Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes
    Stuart R. Lipsitz
    Garrett M. Fitzmaurice
    Roger D. Weiss
    Psychometrika, 2020, 85 : 890 - 904
  • [9] Smooth-threshold GEE variable selection for varying coefficient partially linear models with longitudinal data
    Ruiqin Tian
    Liugen Xue
    Yuping Hu
    Journal of the Korean Statistical Society, 2015, 44 : 419 - 431
  • [10] Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes
    Lipsitz, Stuart R.
    Fitzmaurice, Garrett M.
    Weiss, Roger D.
    PSYCHOMETRIKA, 2020, 85 (04) : 890 - 904