Proton Transport in Perfluorinated Ionomer Simulated by Machine-Learned Interatomic Potential

被引:10
|
作者
Jinnouchi, Ryosuke [1 ]
Minami, Saori [1 ]
Karsai, Ferenc [2 ]
Verdi, Carla [3 ]
Kresse, Georg [2 ,3 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan
[2] VASP Software GmbH, A-1090 Vienna, Austria
[3] Univ Vienna, Fac Phys, Computat Mat Phys, A-1090 Vienna, Austria
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 14期
关键词
TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; FORCE-FIELD; WATER; NAFION; MORPHOLOGY; MEMBRANE; CONDUCTIVITY; DIFFUSION; CRYSTAL;
D O I
10.1021/acs.jpclett.3c00293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymers are a class of materials that are highly challenging to deal with using first-principles methods. Here, we present an application of machine-learned interatomic potentials to predict structural and dynamical properties of dry and hydrated perfluorinated ionomers. An improved active-learning algorithm using a small number of descriptors allows to efficiently construct an accurate and transferable model for this multielemental amorphous polymer. Molecular dynamics simulations accelerated by the machine-learned potentials accurately reproduce the heterogeneous hydrophilic and hydrophobic domains formed in this material as well as proton and water diffusion coefficients under a variety of humidity conditions. Our results reveal pronounced contributions of Grotthuss chains consisting of two to three water molecules to the high proton mobility under strongly humidified conditions.
引用
收藏
页码:3581 / 3588
页数:8
相关论文
共 50 条
  • [31] On the Role of Long-Range Electrostatics in Machine-Learned Interatomic Potentials for Complex Battery Materials
    Staacke, Carsten G.
    Heenen, Hendrik H.
    Scheurer, Christoph
    Csanyi, Gabor
    Reuter, Karsten
    Margraf, Johannes T.
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12562 - 12569
  • [32] Protein design with a machine-learned potential about backbone designability
    Sun, Jinyuan
    Wu, Bian
    TRENDS IN BIOCHEMICAL SCIENCES, 2022, 47 (08) : 638 - 640
  • [33] Unraveling the crystallization kinetics of the Ge2Sb2Te5 phase change compound with a machine-learned interatomic potential
    Omar Abou El Kheir
    Luigi Bonati
    Michele Parrinello
    Marco Bernasconi
    npj Computational Materials, 10
  • [34] Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential
    Mocanu, Felix C.
    Konstantinou, Konstantinos
    Lee, Tae Hoon
    Bernstein, Noam
    Deringer, Volker L.
    Csanyi, Gabor
    Elliott, Stephen R.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (38): : 8998 - 9006
  • [35] Unraveling the crystallization kinetics of the Ge2Sb2Te5 phase change compound with a machine-learned interatomic potential
    El Kheir, Omar Abou
    Bonati, Luigi
    Parrinello, Michele
    Bernasconi, Marco
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [36] Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
    Zong, Hongxiang
    Wiebe, Heather
    Ackland, Graeme J.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [37] Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: Defects and segregation
    Byggmastar, J.
    Nordlund, K.
    Djurabekova, F.
    PHYSICAL REVIEW B, 2021, 104 (10)
  • [38] Multikernel similarity-based clustering of amorphous systems and machine-learned interatomic potentials by active learning
    Shuaib, Firas
    Ori, Guido
    Thomas, Philippe
    Masson, Olivier
    Bouzid, Assil
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2025, 108 (01)
  • [39] Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
    Hongxiang Zong
    Heather Wiebe
    Graeme J. Ackland
    Nature Communications, 11
  • [40] Machine learned interatomic potential for dispersion strengthened plasma facing components
    Sikorski, E. L.
    Cusentino, M. A.
    McCarthy, M. J.
    Tranchida, J.
    Wood, M. A.
    Thompson, A. P.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (11):