Machine learning and protein allostery

被引:13
作者
Xiao, Sian [1 ]
Verkhivker, Gennady M. [2 ,3 ]
Tao, Peng [1 ]
机构
[1] Southern Methodist Univ, Ctr Res Comp Ctr Drug Discovery Design & Delivery, Dept Chem, Dallas, TX 75205 USA
[2] Chapman Univ, Schmid Coll Sci & Technol, Grad Program Computat & Data Sci, Orange, CA 92866 USA
[3] Chapman Univ, Sch Pharm, Dept Biomed & Pharmaceut Sci, Irvine, CA 92618 USA
基金
美国国家卫生研究院;
关键词
MOLECULAR-DYNAMICS; COMMUNICATION PATHWAYS; FUNCTIONAL SITES; BINDING; IDENTIFICATION; LANDSCAPES; SIMULATIONS; MECHANISMS; PLASTICITY; RECEPTOR;
D O I
10.1016/j.tibs.2022.12.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The fundamental biological importance and complexity of allosterically regulated proteins stem from their central role in signal transduction and cellular processes. Recently, machine-learning approaches have been developed and actively de-ployed to facilitate theoretical and experimental studies of protein dynamics and allosteric mechanisms. In this review, we survey recent developments in applica-tions of machine-learning methods for studies of allosteric mechanisms, prediction of allosteric effects and allostery-related physicochemical properties, and allosteric protein engineering. We also review the applications of machine-learning strategies for characterization of allosteric mechanisms and drug design targeting SARS-CoV-2. Continuous development and task-specific adaptation of machine-learning methods for protein allosteric mechanisms will have an increasingly important role in bridging a wide spectrum of data-intensive experimental and theoretical technologies.
引用
收藏
页码:375 / 390
页数:16
相关论文
共 50 条
  • [31] Allostery in membrane proteins
    Cournia, Zoe
    Chatzigoulas, Alexios
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 62 : 197 - 204
  • [32] Editorial: Structural and Dynamic Aspects of Protein Function and Allostery
    Lisi, George P.
    Rivalta, Ivan
    Venditti, Vincenzo
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [33] The Mitochondrial Protein MitoNEET as a Probe for the Allostery of Glutamate Dehydrogenase
    Nnatubeugo, Chimere
    Johnson, Erica
    Gisondi, Sarah
    Roland, Felicia
    Geldenhuys, Werner J. J.
    Menze, Michael A. A.
    Konkle, Mary E. E.
    MOLECULES, 2022, 27 (23):
  • [34] Allostery and the lac Operon
    Lewis, Mitchell
    JOURNAL OF MOLECULAR BIOLOGY, 2013, 425 (13) : 2309 - 2316
  • [35] The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery
    Papaleo, Elena
    Saladino, Giorgio
    Lambrughi, Matteo
    Lindorff-Larsen, Kresten
    Gervasio, Francesco Luigi
    Nussinov, Ruth
    CHEMICAL REVIEWS, 2016, 116 (11) : 6391 - 6423
  • [36] Dielectric Allostery of Protein: Response of Myosin to ATP Binding
    Sato, Takato
    Ohnuki, Jun
    Takano, Mitsunori
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (51) : 13047 - 13055
  • [37] Solution NMR and Computational Methods for Understanding Protein Allostery
    Manley, Gregory
    Rivalta, Ivan
    Loria, J. Patrick
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (11) : 3063 - 3073
  • [38] Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning
    Amangeldiuly, Nurlybek
    Karlov, Dmitry
    Fedorov, Maxim, V
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) : 5946 - 5956
  • [39] From Deep Mutational Mapping of Allosteric Protein Landscapes to Deep Learning of Allostery and Hidden Allosteric Sites: Zooming in on "Allosteric Intersection" of Biochemical and Big Data Approaches
    Verkhivker, Gennady
    Alshahrani, Mohammed
    Gupta, Grace
    Xiao, Sian
    Tao, Peng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)
  • [40] Basis for Accurate Protein pKa Prediction with Machine Learning
    Cai, Zhitao
    Liu, Tengzi
    Lin, Qiaoling
    He, Jiahao
    Lei, Xiaowei
    Luo, Fangfang
    Huang, Yandong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (10) : 2936 - 2947