Predicting quetiapine dose in patients with depression using machine learning techniques based on real-world evidence

被引:1
|
作者
Hao, Yupei [1 ,2 ]
Zhang, Jinyuan [3 ]
Yu, Jing [1 ,2 ]
Yu, Ze [3 ]
Yang, Lin [1 ,2 ]
Hao, Xin [4 ]
Gao, Fei [3 ]
Zhou, Chunhua [1 ,2 ]
机构
[1] Hebei Med Univ, Hosp 1, Dept Clin Pharm, Shijiazhuang, Peoples R China
[2] Hebei Med Univ, Hosp 1, Technol Innovat Ctr Artificial Intelligence Clin P, Shijiazhuang, Peoples R China
[3] Beijing Medicinovo Technol Co Ltd, Beijing, Peoples R China
[4] Dalian Medicinovo Technol Co Ltd, Dalian, Peoples R China
关键词
Quetiapine; Machine learning; Dose; Prediction model; Depression; ECONOMIC BURDEN; ANEMIA; DISORDER; GUIDELINES; HEALTH; ASSOCIATION; MORTALITY; OUTCOMES; ADULTS; MOOD;
D O I
10.1186/s12991-023-00483-w
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Background Being one of the most widespread, pervasive, and troublesome illnesses in the world, depression causes dysfunction in various spheres of individual and social life. Regrettably, despite obtaining evidence-based antidepressant medication, up to 70% of people are going to continue to experience troublesome symptoms. Quetiapine, as one of the most commonly prescribed antipsychotic medication worldwide, has been reported as an effective augmentation strategy to antidepressants. The right quetiapine dose and personalized quetiapine treatment are frequently challenging for clinicians. This study aimed to identify important influencing variables for quetiapine dose by maximizing the use of data from real world, and develop a predictive model of quetiapine dose through machine learning techniques to support selections for treatment regimens. Methods The study comprised 308 depressed patients who were medicated with quetiapine and hospitalized in the First Hospital of Hebei Medical University, from November 1, 2019, to August 31, 2022. To identify the important variables influencing the dose of quetiapine, a univariate analysis was applied. The prediction abilities of nine machine learning models (XGBoost, LightGBM, RF, GBDT, SVM, LR, ANN, DT) were compared. Algorithm with the optimal model performance was chosen to develop the prediction model. Results Four predictors were selected from 38 variables by the univariate analysis (p < 0.05), including quetiapine TDM value, age, mean corpuscular hemoglobin concentration, and total bile acid. Ultimately, the XGBoost algorithm was used to create a prediction model for quetiapine dose that had the greatest predictive performance (accuracy = 0.69) out of nine models. In the testing cohort (62 cases), a total of 43 cases were correctly predicted of the quetiapine dose regimen. In dose subgroup analysis, AUROC for patients with daily dose of 100 mg, 200 mg, 300 mg and 400 mg were 0.99, 0.75, 0.93 and 0.86, respectively. Conclusions In this work, machine learning techniques are used for the first time to estimate the dose of quetiapine for patients with depression, which is valuable for the clinical drug recommendations.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A scoping review of fair machine learning techniques when using real-world data
    Huang, Yu
    Guo, Jingchuan
    Chen, Wei-Han
    Lin, Hsin-Yueh
    Tang, Huilin
    Wang, Fei
    Xu, Hua
    Bian, Jiang
    Journal of Biomedical Informatics, 2024, 151
  • [22] Developing a machine learning model for predicting venlafaxine active moiety concentration: a retrospective study using real-world evidence
    Chang, Luyao
    Hao, Xin
    Yu, Jing
    Zhang, Jinyuan
    Liu, Yimeng
    Ye, Xuxiao
    Yu, Ze
    Gao, Fei
    Pang, Xiaolu
    Zhou, Chunhua
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2024, 46 (04) : 899 - 909
  • [23] Promises and Perils of Machine Learning: A Real-World Evidence Fable
    Ritchey, Mary E.
    Funk, Michele Jonsson
    Anthony, Mary
    Noren, G. Niklas
    Thomas, Steven
    Dasgupta, Nabarun
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 460 - 460
  • [24] Predicting new-onset post-stroke depression from real-world data using machine learning algorithm
    Chen, Yu-Ming
    Chen, Po-Cheng
    Lin, Wei-Che
    Hung, Kuo-Chuan
    Chen, Yang-Chieh Brian
    Hung, Chi-Fa
    Wang, Liang-Jen
    Wu, Ching-Nung
    Hsu, Chih-Wei
    Kao, Hung-Yu
    FRONTIERS IN PSYCHIATRY, 2023, 14
  • [25] Real-World Evidence: Integrating Machine Learning with Real-World Big Data for Predictive Analytics in Healthcare
    Vecchio, Nicolas
    CARDIOLOGY, 2024,
  • [26] Machine learning approach to identify malaria risk in travelers using real-world evidence
    Fleitas, Pedro Emanuel
    Sarasola, Leire Balerdi
    Ferrer, Daniel Camprubi
    Munoz, Jose
    Petrone, Paula
    HELIYON, 2024, 10 (07)
  • [27] Predicting Wilson disease progression using machine learning with real-world electronic health records
    Liang, Caihua
    Kelly, Scott
    Shen, Rongjun
    Li, Ling
    Lobello, Kasia
    Arkin, Steven
    Huang, Kui
    Zhou, Xiaofeng
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 63 - 64
  • [28] Automating Fault Prediction in Software Testing using Machine Learning Techniques: A Real-World Applications
    Panda, Prasanta
    Sahoo, Debaryaan
    Sahoo, Debarjun
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 841 - 844
  • [29] Predicting Women with Postpartum Depression Symptoms Using Machine Learning Techniques
    Gopalakrishnan, Abinaya
    Venkataraman, Revathi
    Gururajan, Raj
    Zhou, Xujuan
    Zhu, Guohun
    MATHEMATICS, 2022, 10 (23)
  • [30] Predicting Response to Tocilizumab Monotherapy in Rheumatoid Arthritis: A Real-world Data Analysis Using Machine Learning
    Johansson, Fredrik D.
    Collins, Jamie E.
    Yau, Vincent
    Guan, Hongshu
    Kim, Seoyoung C.
    Losina, Elena
    Sontag, David
    Stratton, Jacklyn
    Trinh, Huong
    Greenberg, Jeffrey
    Solomon, Daniel H.
    JOURNAL OF RHEUMATOLOGY, 2021, 48 (09) : 1364 - 1370