Management of soliton pulse speed in inhomogeneous optical waveguides with dual-power law refractive index

被引:1
作者
Triki, Houria [1 ]
Liu, Yaxian [2 ]
机构
[1] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, POB 12, Annaba 23000, Algeria
[2] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Peoples R China
关键词
Solitons; Dual-power law nonlinearity; Soliton wave-speed management; NONLINEAR SCHRODINGER-EQUATION; VARYING DISPERSION;
D O I
10.1007/s11082-023-06268-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the control of the soliton wave speed in an inhomogeneous optical waveguide with dual-power law refractive index through the temporal variations of the system parameters. Such controling process is analyzed within the framework of the nonlinear Schrodinger equation with time-dependent second-order dispersion and two power-law nonlinearitities. The model applies to the description of ultrashort pulse propagation in an optical medium with temporally modulated dispersion and dual-power law nonlinearity. We find that while the wave speed of bright and kink soliton structures can be modified in accordance with the temporally modulated waveguide parameters, their amplitude and width keep invariant during the propagation. Interestingly, the results show that the soliton pulses can be stopped, slowed, reversed, and accelerated through suitable variation of the time varying dispersion parameter.
引用
收藏
页数:18
相关论文
共 54 条
[1]  
Abdullaev F., 1991, Optical Solitons, DOI [10.1142/1161, DOI 10.1142/1161]
[2]   FEMTOSECOND DYNAMICS OF SEMICONDUCTOR-DOPED GLASSES USING A NEW SOURCE OF INCOHERENT-LIGHT [J].
ACIOLI, LH ;
GOMES, ASL ;
HICKMANN, JM ;
DEARAUJO, CB .
APPLIED PHYSICS LETTERS, 1990, 56 (23) :2279-2281
[3]   TUNNELING OF AN OPTICAL SOLITON THROUGH A FIBER JUNCTION [J].
ANDERSON, D ;
LISAK, M ;
MALOMED, B ;
QUIROGATEIXEIRO, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1994, 11 (12) :2380-2384
[4]   Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave [J].
Baines, Luke W. S. ;
Van Gorder, Robert A. .
PHYSICAL REVIEW A, 2018, 97 (06)
[5]   1-soliton solution of (1+2)-dimensional nonlinear Schrodinger's equation in dual-power law media [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (38) :5941-5943
[6]   Measurement of fifth- and seventh-order nonlinearities of glasses [J].
Chen, YF ;
Beckwitt, K ;
Wise, FW ;
Aitken, BG ;
Sanghera, JS ;
Aggarwal, ID .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (02) :347-352
[7]   HELMHOLTZ SOLITONS IN OPTICAL MATERIALS WITH A DUAL POWER-LAW REFRACTIVE INDEX [J].
Christian, J. M. ;
McDonald, G. S. ;
Chamorro-Posada, P. .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2010, 19 (03) :389-405
[8]   Nonlinear similariton tunneling effect in the birefringent fiber [J].
Dai, Chaoqing ;
Wang, Yueyue ;
Zhang, Jiefang .
OPTICS EXPRESS, 2010, 18 (16) :17548-17554
[9]   Chirped and chirp-free self-similar cnoidal and solitary wave solutions of the cubic-quintic nonlinear Schrodinger equation with distributed coefficients [J].
Dai, Chaoqing ;
Wang, Yueyue ;
Yan, Caijie .
OPTICS COMMUNICATIONS, 2010, 283 (07) :1489-1494
[10]   Four soliton propagation in a generalized nonautonomous Hirota equation using Darboux transformation [J].
Gugan, S. ;
Subramanian, K. ;
Rajan, M. S. Mani ;
Alagesan, T. .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)