On the spectra of token graphs of cycles and other graphs

被引:5
作者
Reyes, M. A. [1 ]
Dalfo, C. [1 ]
Fiol, M. A. [2 ,3 ]
Messegue, A. [1 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida Igualada, Catalonia, Spain
[2] Univ Politecn Cataluna, Dept Matemat, Barcelona, Catalonia, Spain
[3] UPC BarcelonaTech IMTech, Barcelona Grad Sch Math, Inst Matemat, Catalonia, Spain
关键词
Token graph; Laplacian spectrum; Algebraic connectivity; Binomial matrix; Lift graph; Regular partition;
D O I
10.1016/j.laa.2023.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The k-token graph Fk(G) of a graph G is the graph whose vertices are the k-subsets of vertices from G, two of which being adjacent whenever their symmetric difference is a pair of adjacent vertices in G. It is a known result that the algebraic connectivity (or second Laplacian eigenvalue) of Fk(G) equals the algebraic connectivity of G. In this paper, we first give results that relate the algebraic connectivities of a token graph and the same graph after removing a vertex. Then, we prove the result on the algebraic connectivity of 2-token graphs for two infinite families: the odd graphs Or for all r, and the multipartite complete graphs Kn1,n2,...,nr for all n1, n2, . . . , nr In the case of cycles, we present a new method that allows us to compute the whole spectrum of F2(Cn). This method also allows us to obtain closed formulas that give asymptotically exact approximations for most of the eigenvalues of F2 (Cn). (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:38 / 66
页数:29
相关论文
共 23 条
[1]   Survey of double vertex graphs [J].
Alavi, Y ;
Lick, DR ;
Liu, JQ .
GRAPHS AND COMBINATORICS, 2002, 18 (04) :709-715
[2]   Symmetric squares of graphs [J].
Audenaert, Koenraad ;
Godsil, Chris ;
Royle, Gordon ;
Rudolph, Terry .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (01) :74-90
[3]   RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM [J].
BUNCH, JR ;
NIELSEN, CP ;
SORENSEN, DC .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :31-48
[4]   PROOF OF ALDOUS' SPECTRAL GAP CONJECTURE [J].
Caputo, Pietro ;
Liggett, Thomas M. ;
Richthammer, Thomas .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) :831-851
[5]   A Few Remarks on the Octopus Inequality and Aldous' Spectral Gap Conjecture [J].
Cesi, Filippo .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) :279-302
[6]  
Dalfo C, 2022, Arxiv, DOI [arXiv:2209.01030, 10.48550/arxiv.2209.01030, DOI 10.48550/ARXIV.2209.01030]
[7]   On the spectra and eigenspaces of the universal adjacency matrices of arbitrary lifts of graphs [J].
Dalfo, C. ;
Fiol, M. A. ;
Pavlikova, S. ;
Siran, J. .
LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (05) :693-710
[8]   On the Laplacian spectra of token graphs [J].
Dalfo, C. ;
Duque, F. ;
Fabila-Monroy, R. ;
Fiol, M. A. ;
Huemer, C. ;
Trujillo-Negrete, A. L. ;
Zaragoza Martinez, F. J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 625 :322-348
[9]   An algebraic approach to lifts of digraphs [J].
Dalfo, C. ;
Fiol, M. A. ;
Miller, M. ;
Ryan, J. ;
Siran, J. .
DISCRETE APPLIED MATHEMATICS, 2019, 269 :68-76
[10]   The spectra of lifted digraphs [J].
Dalfo, C. ;
Fiol, M. A. ;
Siran, J. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (04) :419-426