Self-powered triboelectric nanogenerator sensor for detecting humidity level and monitoring ethanol variation in a simulated exhalation environment

被引:18
|
作者
Mohamadbeigi, Nima [1 ]
Shooshtari, Leyla [1 ]
Fardindoost, Somayeh [1 ,2 ]
Vafaiee, Mohaddese [1 ]
Zad, Azam Iraji [1 ,3 ]
Mohammadpour, Raheleh [1 ]
机构
[1] Sharif Univ Technol, Inst Convergence Sci & Technol, Ctr Nanosci & Nanotechnol, Tehran, Iran
[2] Univ Victoria, Fac Engn, Dept Mech Engn, POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
[3] Sharif Univ Technol, Dept Phys, Azadi St,POB 11365-9161, Tehran, Iran
基金
美国国家科学基金会;
关键词
BREATH; MECHANISMS; TRANSPORT; SURFACE; CU2O;
D O I
10.1038/s41598-024-51862-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Respiration stands as a vital process reflecting physiological and pathological human health status. Exhaled breath analysis offers a facile, non-invasive, swift, and cost-effective approach for diagnosing and monitoring diseases by detecting concentration changes of specific biomarkers. In this study, we employed Polyethylene oxide/copper (I) oxide composite nanofibers (PCNFs), synthesized via the electrospinning method as the sensing material to measure ethanol levels (1-200 ppm) in an exhaled breath simulator environment. The integrated contact-separation triboelectric nanogenerator was utilized to power the self-powered PCNFs exhaled breath sensor. The PCNFs-based gas sensor demonstrates promising results with values of 0.9 and 3.2 for detecting 5 ppm and 200 ppm ethanol, respectively, in the presence of interfering gas at 90% relative humidity (RH). Notably, the sensor displayed remarkable ethanol selectivity, with ratios of 10:1 to methanol and 25:1 to acetone. Response and recovery times for 200 ppm ethanol at 90 RH% were rapid, at 2.7 s and 5.8 s, respectively. The PCNFs-based exhaled breath sensor demonstrated consistent and stable performance in practical conditions, showcasing its potential for integration into wearable devices. This self-powered breath sensor enabling continuous monitoring of lung cancer symptoms and facilitating compliance checks with legal alcohol consumption limits.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] On-vehicle triboelectric nanogenerator enabled self-powered sensor for tire pressure monitoring
    Qian, Jingui
    Kim, Dong-Su
    Lee, Dong-Weon
    NANO ENERGY, 2018, 49 : 126 - 136
  • [32] A self-powered sensor for detecting slip state and pressure of underwater actuators based on triboelectric nanogenerator
    Shan, Baichuan
    Liu, Changxin
    Chen, Runhe
    Qu, Guanghao
    Sui, Hao
    Chen, Nanxi
    Xing, Guangyi
    MATERIALS TODAY NANO, 2023, 24
  • [33] A self-powered triboelectric sensor for basketball monitoring
    Yang, Hailin
    Zhang, Shuai
    Li, Jianghua
    AIP ADVANCES, 2024, 14 (01)
  • [34] Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator
    Wang, Jiyu
    Ding, Wenbo
    Pan, Lun
    Wu, Changsheng
    Yu, Hua
    Yang, Lijun
    Liao, Ruijin
    Wang, Zhong Lin
    ACS NANO, 2018, 12 (04) : 3954 - 3963
  • [35] Tube-based triboelectric nanogenerator for self-powered detecting blockage and monitoring air pressure
    Cui, Xiaojing
    Zhang, Hulin
    Cao, Shengli
    Yuan, Zhongyun
    Ding, Jie
    Sang, Shengbo
    NANO ENERGY, 2018, 52 : 71 - 77
  • [36] Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator
    Zou, Yongjiu
    Sun, Minzheng
    Xu, Weipeng
    Zhao, Xin
    Du, Taili
    Sun, Peiting
    Xu, Minyi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [37] Triboelectric nanogenerator as self-powered impact force sensor for falling object
    Aminullah
    Kasi, Ajab Khan
    Kasi, Jafar Khan
    Uddin, Moiz
    Bokhari, Muzamil
    CURRENT APPLIED PHYSICS, 2020, 20 (01) : 137 - 144
  • [38] A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
    Kequan Xia
    Zhiyuan Zhu
    Hongze Zhang
    Zhiwei Xu
    Applied Physics A, 2018, 124
  • [39] Triboelectric nanogenerator based self-powered sensor with a turnable sector structure for monitoring driving behavior
    Lu, Xiao
    Zhang, Haodong
    Zhao, Xiuzhong
    Yang, Hui
    Zheng, Li
    Wang, Wuhong
    Sun, Chunwen
    NANO ENERGY, 2021, 89
  • [40] Fully self-powered instantaneous wireless liquid level sensor system based on triboelectric nanogenerator
    Xu, Liangquan
    Tang, Yuzhi
    Zhang, Chi
    Liu, Fuhai
    Chen, Jinkai
    Xuan, Weipeng
    Jin, Hao
    Ye, Zhi
    Cao, Zhen
    Li, Yubo
    Wang, Xiaozi
    Dong, Shurong
    Luo, Jikui
    NANO RESEARCH, 2022, 15 (06) : 5425 - 5434