Sentinel-1 Imagery Used for Estimation of Soil Organic Carbon by Dual-Polarization SAR Vegetation Indices

被引:11
作者
dos Santos, Erli Pinto [1 ]
Moreira, Michel Castro [1 ]
Fernandes-Filho, Elpidio Inacio [2 ]
Dematte, Jose Alexandre M. [3 ]
Dionizio, Emily Ane [1 ]
da Silva, Demetrius David [1 ]
Cruz, Renata Ranielly Pedroza [4 ]
Moura-Bueno, Jean Michel [5 ]
dos Santos, Uemeson Jose [6 ]
Costa, Marcos Heil [1 ]
机构
[1] Univ Fed Vicosa, Dept Agr Engn, Univ Campus,Peter Henry Rolfs Ave, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Soil, Univ Campus,Peter Henry Rolfs Ave, BR-36570900 Vicosa, MG, Brazil
[3] Univ Sao Paulo, Luiz de Queiroz Coll Agr, Dept Soil Sci, Padua Dias Ave, BR-13418900 Piracicaba, SP, Brazil
[4] Univ Fed Vicosa, Dept Agron, Univ Campus,Peter Henry Rolfs Ave, BR-36570900 Vicosa, MG, Brazil
[5] Univ Fed Santa Maria, Soil Sci Dept, Roraima Ave 1000, BR-97105900 Santa Maria, RS, Brazil
[6] Fed Inst Educ Sci & Technol Para, Campus Obidos,Rodovia PA 437,Km 02, BR-68250000 Obidos, PA, Brazil
关键词
synthetic aperture radar; machine learning; Brazilian Cerrado; digital soil mapping; SYNTHETIC-APERTURE RADAR; SPECTRAL LIBRARY; STRATIFICATION; PREDICTION; STORAGE; STOCKS;
D O I
10.3390/rs15235464
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite optical remote sensing (and the spectral vegetation indices) contributions to digital soil-mapping studies of soil organic carbon (SOC), few studies have used active radar remote sensing mission data like that from synthetic aperture radar (SAR) sensors to predict SOC. Bearing in mind the importance of SOC mapping for agricultural, ecological, and climate interests and also the recently developed methods for vegetation monitoring using Sentinel-1 SAR data, in this work, we aimed to take advantage of the high operationality of Sentinel-1 imaging to test the accuracy of SOC prediction at different soil depths using machine learning systems. Using linear, nonlinear, and tree regression-based methods, it was possible to predict the SOC content of soils from western Bahia, Brazil, a region with predominantly sandy soils, using as explanatory variables the SAR vegetation indices. The models fed with SAR sensor polarizations and vegetation indices produced more accurate results for the topsoil layers (0-5 cm and 5-10 cm in depth). In these superficial layers, the models achieved an RMSE in the order of 5.0 g kg-1 and an R2 ranging from 0.16 to 0.24, therefore explaining about 20% of SOC variability using only Sentinel-1 predictors.
引用
收藏
页数:20
相关论文
共 75 条
[1]   Koppen's climate classification map for Brazil [J].
Alvares, Clayton Alcarde ;
Stape, Jose Luiz ;
Sentelhas, Paulo Cesar ;
de Moraes Goncalves, Jose Leonardo ;
Sparovek, Gerd .
METEOROLOGISCHE ZEITSCHRIFT, 2013, 22 (06) :711-728
[2]  
[Anonymous], 2011, Embrapa Mapa de Solos Do Brasil
[3]  
[Anonymous], 2023, R: a language and environment for statistical computing
[4]  
asf.alaska.edu, 2019, ASF Copernicus Sentinel Data 2017
[5]   Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra? [J].
Bartsch, Annett ;
Widhalm, Barbara ;
Kuhry, Peter ;
Hugelius, Gustaf ;
Palmtag, Juri ;
Siewert, Matthias Benjamin .
BIOGEOSCIENCES, 2016, 13 (19) :5453-5470
[6]   Soil moisture retrieval over croplands using dual-pol L-band GRD SAR data [J].
Bhogapurapu, Narayanarao ;
Dey, Subhadip ;
Mandal, Dipankar ;
Bhattacharya, Avik ;
Karthikeyan, L. ;
McNairn, Heather ;
Rao, Y. S. .
REMOTE SENSING OF ENVIRONMENT, 2022, 271
[7]   A random forest guided tour [J].
Biau, Gerard ;
Scornet, Erwan .
TEST, 2016, 25 (02) :197-227
[8]   Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach [J].
Bispo, Polyanna da Conceicao ;
Rodriguez-Veiga, Pedro ;
Zimbres, Barbara ;
de Miranda, Sabrina Couto ;
Giusti Cezare, Cassio Henrique ;
Fleming, Sam ;
Baldacchino, Francesca ;
Louis, Valentin ;
Rains, Dominik ;
Garcia, Mariano ;
Espirito-Santo, Fernando Del Bon ;
Roitman, Iris ;
Pacheco-Pascagaza, Ana Maria ;
Gou, Yaqing ;
Roberts, John ;
Barrett, Kirsten ;
Ferreira, Laerte Guimaraes ;
Shimbo, Julia Zanin ;
Alencar, Ane ;
Bustamante, Mercedes ;
Woodhouse, Iain Hector ;
Sano, Edson Eyji ;
Ometto, Jean Pierre ;
Tansey, Kevin ;
Balzter, Heiko .
REMOTE SENSING, 2020, 12 (17)
[9]  
Boehmke B., 2019, HANDS ON MACHINE LEA
[10]  
Breiman L, 2001, MACH LEARN, V45, P5, DOI [10.1186/s12859-018-2419-4, 10.3322/caac.21834]