The Effects of Waste Materials on the Thermo-mechanical Properties of Eco-Friendly Bricks

被引:0
|
作者
Kocyigit, Sermin [1 ]
机构
[1] Dicle Univ, Tech Sci Vocat Sch, Dept Construct Technol, Diyarbakir, Turkiye
关键词
Effective thermal conductivity; Energy saving; Lightweight clay bricks; Pore making material; Recycling; Rice husk ash; FIRED CLAY BRICKS; RICE HUSK ASH; INSULATION; SLUDGE; PERFORMANCE; BUILDINGS; RESIDUES; MORTAR;
D O I
10.1007/s10765-023-03260-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
The world is now obliged to produce sustainable, green and environmentally friendly construction materials to improve thermal comfort in buildings, reduce energy costs, and alleviate the effects of both greenhouse gas emissions and global warming. In this study, the researcher produced cost-effective eco-friendly construction materials with higher effective thermal conductivity using two alkaline activators (AA), sodium hydroxide (NaOH) and sodium silicate (Na2SiO3), in combination with waste materials including a regional volcanic rock Diyarbakir Karacadag Red Scoria (KS) and Karacadag rice husk ash (RHA). First, the researcher analysed the raw materials through Particle Size analysis, XRF, XRD, TGA/DTA, SEM, and EDS to determine their characteristics. Then, they were mixed at different rates to form mixtures (clay: 65 %, 60 %, 55 %, 55 %, and 50 %; KS: 30 % (fixed); RHA: 5 %, 10 %, 15 %, and 20 %; AA: 5 %, 10 %, and 15 %). Rectangular samples for mechanical tests and cylindrical samples for thermal tests were made and fired at 950 degrees C. Next, SEM, EDS and XRD analyses were carried out on the fractured bricks after they were tested for compressive strength. Then, the researcher analysed the fired bricks for their bulk density, apparent porosity, water absorption, compressive strength, loss on ignition, effective thermal conductivity, and microstructures. Experimental results demonstrated that porosity, water absorption, and loss on ignition increased. However, density, compressive strength, and effective thermal conductivity decreased as the rates of RHA and NaOH + Na2SiO3 increased with Karacadag scoria at a fixed rate. The addition of waste RHA, KS, and AA in the brick yielded in a significant improvement in thermal performance (by 0.263 W center dot mK-1) compared to the control bricks (1.043 W center dot mK-1), while the compressive strength dropped from 32.5 MPa to 7.2 MPa. Even though the compressive strength decreased due to the micropores forming as a result of the addition of these materials in the brick, it was greater than 7MP, as stated in the literature. The findings of this study indicated that the fired clay bricks produced are potential materials for construction applications that require an appropriate thermal insulation and mechanical strength, as well as internal structural applications.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Investigation into the use of unground rice husk ash to produce eco-friendly construction bricks
    Hwang, Chao-Lung
    Trong-Phuoc Huynh
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 93 : 335 - 341
  • [32] Tribological assessment of rice husk ash in eco-friendly brake friction materials
    Gehlen, G. S.
    Nogueira, A. P. G.
    Carlevaris, D.
    Barros, L. Y.
    Poletto, J. C.
    Lasch, G.
    Straffelini, G.
    Ferreira, N. F.
    Neis, P. D.
    WEAR, 2023, 516
  • [33] Mechanical Properties of an Eco-friendly Concrete with partial replacement of POC and Rubber
    Espinoza, A.
    Jimenez, B.
    Rodriguez, J.
    Eyzaguirre, C.
    2019 7TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING, 2020, 758
  • [34] Thermo-mechanical devulcanization and recycling of rubber industry waste
    Seghar, Said
    Asaro, Lucia
    Rolland-Monnet, Morena
    Hocine, Nourredine Ait
    RESOURCES CONSERVATION AND RECYCLING, 2019, 144 : 180 - 186
  • [35] A review of eco-friendly functional road materials
    Jiang, Wei
    Huang, Yue
    Sha, Aimin
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 191 : 1082 - 1092
  • [36] Study on fresh and hardened state properties of eco-friendly foamed concrete incorporating waste soda-lime glass
    Mydin, Md Azree Othuman
    Jagadesh, P.
    Bahrami, Alireza
    Majeed, Samadar S.
    Dulaimi, Anmar
    Omar, Roshartini
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [37] Editorial: Sustainable and eco-friendly building materials
    Saleh, Hosam M. M.
    Dawoud, Mohamed M. M.
    Hassan, Amal I. I.
    FRONTIERS IN BUILT ENVIRONMENT, 2023, 9
  • [38] Eco-friendly concrete with waste glass powder: A sustainable and circular solution
    Paul, Deepa
    Bindhu, K. R.
    Matos, Ana Mafalda
    Delgado, Joao
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 355
  • [39] Comprehensive investigation of the durability and mechanical properties of eco-friendly geopolymer concrete (alkali-activated)
    Esparham, A.
    Rezaei, S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (09) : 6615 - 6636
  • [40] Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers
    Rubino, Chiara
    Bonet Aracil, Mariles
    Gisbert-Paya, Jaime
    Liuzzi, Stefania
    Stefanizzi, Pietro
    Zamorano Canto, Manuel
    Martellotta, Francesco
    MATERIALS, 2019, 12 (23)