The Effects of Waste Materials on the Thermo-mechanical Properties of Eco-Friendly Bricks

被引:0
|
作者
Kocyigit, Sermin [1 ]
机构
[1] Dicle Univ, Tech Sci Vocat Sch, Dept Construct Technol, Diyarbakir, Turkiye
关键词
Effective thermal conductivity; Energy saving; Lightweight clay bricks; Pore making material; Recycling; Rice husk ash; FIRED CLAY BRICKS; RICE HUSK ASH; INSULATION; SLUDGE; PERFORMANCE; BUILDINGS; RESIDUES; MORTAR;
D O I
10.1007/s10765-023-03260-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
The world is now obliged to produce sustainable, green and environmentally friendly construction materials to improve thermal comfort in buildings, reduce energy costs, and alleviate the effects of both greenhouse gas emissions and global warming. In this study, the researcher produced cost-effective eco-friendly construction materials with higher effective thermal conductivity using two alkaline activators (AA), sodium hydroxide (NaOH) and sodium silicate (Na2SiO3), in combination with waste materials including a regional volcanic rock Diyarbakir Karacadag Red Scoria (KS) and Karacadag rice husk ash (RHA). First, the researcher analysed the raw materials through Particle Size analysis, XRF, XRD, TGA/DTA, SEM, and EDS to determine their characteristics. Then, they were mixed at different rates to form mixtures (clay: 65 %, 60 %, 55 %, 55 %, and 50 %; KS: 30 % (fixed); RHA: 5 %, 10 %, 15 %, and 20 %; AA: 5 %, 10 %, and 15 %). Rectangular samples for mechanical tests and cylindrical samples for thermal tests were made and fired at 950 degrees C. Next, SEM, EDS and XRD analyses were carried out on the fractured bricks after they were tested for compressive strength. Then, the researcher analysed the fired bricks for their bulk density, apparent porosity, water absorption, compressive strength, loss on ignition, effective thermal conductivity, and microstructures. Experimental results demonstrated that porosity, water absorption, and loss on ignition increased. However, density, compressive strength, and effective thermal conductivity decreased as the rates of RHA and NaOH + Na2SiO3 increased with Karacadag scoria at a fixed rate. The addition of waste RHA, KS, and AA in the brick yielded in a significant improvement in thermal performance (by 0.263 W center dot mK-1) compared to the control bricks (1.043 W center dot mK-1), while the compressive strength dropped from 32.5 MPa to 7.2 MPa. Even though the compressive strength decreased due to the micropores forming as a result of the addition of these materials in the brick, it was greater than 7MP, as stated in the literature. The findings of this study indicated that the fired clay bricks produced are potential materials for construction applications that require an appropriate thermal insulation and mechanical strength, as well as internal structural applications.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study
    Rahgozar, Mohammad Ali
    Saberian, Mohammad
    Li, Jie
    TRANSPORTATION GEOTECHNICS, 2018, 14 : 52 - 60
  • [22] Utilizing coral waste and metakaolin to produce eco-friendly marine mortar: Hydration, mechanical properties and durability
    Wang, Yunyao
    Shui, Zhonghe
    Gao, Xu
    Huang, Yun
    Yu, Rui
    Li, Xiaosheng
    Yang, Rui
    JOURNAL OF CLEANER PRODUCTION, 2019, 219 : 763 - 774
  • [23] A new proposal to reduce microplastics from cigarette butts: Production of eco-friendly fired clay bricks
    Paulista, Cassio Rangel
    Ferreira, Elvis Pantaleao
    Guimaraes, Carlos Alberto de Oliveira
    Delaqua, Geovana Carla Girondi
    Lopera, Henry Alonso Colorado
    da Silva, Marcelo Gomes
    Vieira, Carlos Mauricio Fontes
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 449
  • [24] A review of converting woody biomass waste into useful and eco-friendly road materials
    Zhang, Xue
    Li, Hui
    Harvey, John T.
    Butt, Ali A.
    Jia, Ming
    Liu, Jiawen
    TRANSPORTATION SAFETY AND ENVIRONMENT, 2022, 4 (01)
  • [25] Eco-friendly concrete with waste ceramic tile as coarse aggregate: mechanical strength, durability, and microstructural properties
    Paul S.C.
    Faruky S.A.U.
    Babafemi A.J.
    Miah M.J.
    Asian Journal of Civil Engineering, 2023, 24 (8) : 3363 - 3373
  • [26] Thermo-mechanical and physical properties of waste granular cork composite with slag cement
    Merabti, Salem
    Kenai, Said
    Belarbi, Rafik
    Khatib, Jamal
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 272
  • [27] Advancements in sustainable phase change materials: Valorizing waste for eco-friendly applications
    Wu, Wen-Ya
    Yeap, Isaac Sheng Rong
    Wang, Suxi
    Tomczak, Nikodem
    Lin, Ming
    Kai, Dan
    Ye, Enyi
    Thitsartarn, Warintorn
    Tan, Janet Beng Hoon
    Yin, Xuesong
    Xu, Jianwei
    Loh, Xian Jun
    Zhu, Qiang
    MATERIALS TODAY CHEMISTRY, 2024, 39
  • [28] Development of eco-friendly geopolymer concrete by utilizing hazardous industrial waste materials
    Kumar, A. Suresh
    Muthukannan, M.
    Arunkumar, K.
    Sriram, M.
    Vigneshwar, R.
    Sikkandar, A. Gulshan
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 2215 - 2225
  • [29] Exploring the potential use of incinerated biomedical waste ash as an eco-friendly solution in concrete composites: A review
    Manjunath, Balasubramanya
    Di Mare, Michael
    Ouellet-Plamondon, Claudiane M.
    Bhojaraju, Chandrasekhar
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 387
  • [30] Effect on mechanical properties and microstructure of high-strength eco-friendly concrete with waste glass powder-eggshell particles
    Yuan, Xiaosa
    Dai, Mingjiang
    Gao, Yingjie
    Zhou, Yanbo
    Liu, Fang
    JOURNAL OF BUILDING ENGINEERING, 2023, 79