Higher-order tension spline-based numerical technique for time fractional reaction-diffusion wave equation with damping

被引:7
作者
Chawla, Reetika [1 ]
Kumar, Devendra [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Math, Pilani 333031, Rajasthan, India
关键词
Caputo derivative; Tension spline; Reaction-diffusion wave equation; Local truncation error; Stability; Convergence; COLLOCATION METHOD; DIFFERENCE SCHEME;
D O I
10.1007/s40435-023-01222-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents an efficient numerical technique based on tension spline for the time fractional reaction-diffusion wave equation with damping. The proposed method involves the tension factor associated with the splines. Moreover, the order of accuracy relies on the suitable choice of two parameters that increment it from two to four, which is explained conceptually and numerically. The time-fractional derivative is considered as Caputo derivative. We have shown that our technique is unconditionally stable and convergent through rigorous analysis. Two test examples show the numerical scheme's effectiveness and verify theoretical results.
引用
收藏
页码:634 / 649
页数:16
相关论文
共 29 条
[1]  
Avazzadeh Z, 2014, IRAN J SCI TECHNOL A, V38, P205
[2]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156
[3]   Near-optimal tension parameters in convexity preserving interpolation by generalized cubic splines [J].
Bogdanov, Vladimir V. ;
Volkov, Yuriy S. .
NUMERICAL ALGORITHMS, 2021, 86 (02) :833-861
[4]   A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers' equation [J].
Chawla, Reetika ;
Deswal, Komal ;
Kumar, Devendra .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (03) :883-898
[5]   A novel finite difference based numerical approach for Modified Atangana-Baleanu Caputo derivative [J].
Chawla, Reetika ;
Deswal, Komal ;
Kumar, Devendra ;
Baleanu, Dumitru .
AIMS MATHEMATICS, 2022, 7 (09) :17252-17268
[6]   The analytical solution and numerical solution of the fractional diffusion-wave equation with damping [J].
Chen, J. ;
Liu, F. ;
Anh, V. ;
Shen, S. ;
Liu, Q. ;
Liao, C. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1737-1748
[7]   Sinc-Galerkin method for solving the time fractional convection-diffusion equation with variable coefficients [J].
Chen, Li Juan ;
Li, MingZhu ;
Xu, Qiang .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[8]   A high-order compact exponential scheme for the fractional convection-diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :404-416
[9]   Wavelets method for the time fractional diffusion-wave equation [J].
Heydari, M. H. ;
Hooshmandasl, M. R. ;
Ghaini, F. M. Maalek ;
Cattani, C. .
PHYSICS LETTERS A, 2015, 379 (03) :71-76
[10]   Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions [J].
Hooshmandasl, M. R. ;
Heydari, M. H. ;
Cattani, C. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08)