Brain Tumor Classification from MRI Using Image Enhancement and Convolutional Neural Network Techniques

被引:31
作者
Rasheed, Zahid [1 ]
Ma, Yong-Kui [1 ]
Ullah, Inam [2 ]
Ghadi, Yazeed Yasin [3 ]
Khan, Muhammad Zubair [4 ]
Khan, Muhammad Abbas [5 ]
Abdusalomov, Akmalbek [6 ]
Alqahtani, Fayez [7 ]
Shehata, Ahmed M. [8 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Gachon Univ, Dept Comp Engn, Seongnam Si 13120, South Korea
[3] Al Ain Univ, Dept Comp Sci, POB 112612, Abu Dhabi, U Arab Emirates
[4] Balochistan Univ Informat Technol Engn & Managemen, Fac Basic Sci, Quetta 87300, Pakistan
[5] Balochistan Univ Informat Technol Engn & Managemen, Dept Elect Engn, Quetta 87300, Pakistan
[6] Tashkent State Univ Econ, Dept Artificial Intelligence, Tashkent 100066, Uzbekistan
[7] King Saud Univ, Coll Comp & Informat Sci, Software Engn Dept, Riyadh 12372, Saudi Arabia
[8] Menoufia Univ, Fac Elect Engn, Comp Sci & Engn Dept, Menoufia 32511, Egypt
关键词
deep learning; brain tumor; magnetic resonance imaging; classification; neural network; pre-trained models; healthcare;
D O I
10.3390/brainsci13091320
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The independent detection and classification of brain malignancies using magnetic resonance imaging (MRI) can present challenges and the potential for error due to the intricate nature and time-consuming process involved. The complexity of the brain tumor identification process primarily stems from the need for a comprehensive evaluation spanning multiple modules. The advancement of deep learning (DL) has facilitated the emergence of automated medical image processing and diagnostics solutions, thereby offering a potential resolution to this issue. Convolutional neural networks (CNNs) represent a prominent methodology in visual learning and image categorization. The present study introduces a novel methodology integrating image enhancement techniques, specifically, Gaussian-blur-based sharpening and Adaptive Histogram Equalization using CLAHE, with the proposed model. This approach aims to effectively classify different categories of brain tumors, including glioma, meningioma, and pituitary tumor, as well as cases without tumors. The algorithm underwent comprehensive testing using benchmarked data from the published literature, and the results were compared with pre-trained models, including VGG16, ResNet50, VGG19, InceptionV3, and MobileNetV2. The experimental findings of the proposed method demonstrated a noteworthy classification accuracy of 97.84%, a precision success rate of 97.85%, a recall rate of 97.85%, and an F1-score of 97.90%. The results presented in this study showcase the exceptional accuracy of the proposed methodology in accurately classifying the most commonly occurring brain tumor types. The technique exhibited commendable generalization properties, rendering it a valuable asset in medicine for aiding physicians in making precise and proficient brain diagnoses.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Detection and Automated Classification of Brain Tumor Types in MRI Images using Convolutional Neural Network with Grid Search Optimization
    Devi, R. Lakshmi
    Samundeeswari, Vijaya V.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 1280 - 1284
  • [43] Image Based ECG Signal Classification Using Convolutional Neural Network
    Hadiyoso, Sugondo
    Fahrozi, Farrel
    Hariyani, Yuli Sun
    Sulistyo, Mahmud Dwi
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (04) : 64 - 78
  • [44] Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework
    Emrah Irmak
    Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2021, 45 : 1015 - 1036
  • [45] Convolutional Neural Network for Medical Image Classification using Wavelet Features
    Khatami, Amin
    Nazari, Asef
    Beheshti, Amin
    Thanh Thi Nguyen
    Nahavandi, Saeid
    Ziebal, Jerzy
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [46] Transfer Learning Using Convolutional Neural Network Architectures for Glioma Classification from MRI Images
    Kulkarni, Sunita M.
    Sundari, G.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (02): : 198 - 204
  • [47] Enhanced brain tumor classification using an optimized multi-layered convolutional neural network architecture
    Alshayeji, Mohammad
    Al-Buloushi, Jassim
    Ashkanani, Ali
    Abed, Sa'ed
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 28897 - 28917
  • [48] MRI Image Based Classification Model for Lung Tumor Detection Using Convolutional Neural Networks
    Kumar, Makineni Siddardha
    Rao, Kasukurthi Venkata
    Kumar, Gona Anil
    TRAITEMENT DU SIGNAL, 2021, 38 (06) : 1837 - 1842
  • [49] Classification of Tumor in Brain MR Images Using Deep Convolutional Neural Network and Global Average Pooling
    Malla, Prince Priya
    Sahu, Sudhakar
    Alutaibi, Ahmed I.
    PROCESSES, 2023, 11 (03)
  • [50] Enhanced brain tumor classification using an optimized multi-layered convolutional neural network architecture
    Mohammad Alshayeji
    Jassim Al-Buloushi
    Ali Ashkanani
    Sa’ed Abed
    Multimedia Tools and Applications, 2021, 80 : 28897 - 28917