Brain Tumor Classification from MRI Using Image Enhancement and Convolutional Neural Network Techniques

被引:31
作者
Rasheed, Zahid [1 ]
Ma, Yong-Kui [1 ]
Ullah, Inam [2 ]
Ghadi, Yazeed Yasin [3 ]
Khan, Muhammad Zubair [4 ]
Khan, Muhammad Abbas [5 ]
Abdusalomov, Akmalbek [6 ]
Alqahtani, Fayez [7 ]
Shehata, Ahmed M. [8 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Gachon Univ, Dept Comp Engn, Seongnam Si 13120, South Korea
[3] Al Ain Univ, Dept Comp Sci, POB 112612, Abu Dhabi, U Arab Emirates
[4] Balochistan Univ Informat Technol Engn & Managemen, Fac Basic Sci, Quetta 87300, Pakistan
[5] Balochistan Univ Informat Technol Engn & Managemen, Dept Elect Engn, Quetta 87300, Pakistan
[6] Tashkent State Univ Econ, Dept Artificial Intelligence, Tashkent 100066, Uzbekistan
[7] King Saud Univ, Coll Comp & Informat Sci, Software Engn Dept, Riyadh 12372, Saudi Arabia
[8] Menoufia Univ, Fac Elect Engn, Comp Sci & Engn Dept, Menoufia 32511, Egypt
关键词
deep learning; brain tumor; magnetic resonance imaging; classification; neural network; pre-trained models; healthcare;
D O I
10.3390/brainsci13091320
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The independent detection and classification of brain malignancies using magnetic resonance imaging (MRI) can present challenges and the potential for error due to the intricate nature and time-consuming process involved. The complexity of the brain tumor identification process primarily stems from the need for a comprehensive evaluation spanning multiple modules. The advancement of deep learning (DL) has facilitated the emergence of automated medical image processing and diagnostics solutions, thereby offering a potential resolution to this issue. Convolutional neural networks (CNNs) represent a prominent methodology in visual learning and image categorization. The present study introduces a novel methodology integrating image enhancement techniques, specifically, Gaussian-blur-based sharpening and Adaptive Histogram Equalization using CLAHE, with the proposed model. This approach aims to effectively classify different categories of brain tumors, including glioma, meningioma, and pituitary tumor, as well as cases without tumors. The algorithm underwent comprehensive testing using benchmarked data from the published literature, and the results were compared with pre-trained models, including VGG16, ResNet50, VGG19, InceptionV3, and MobileNetV2. The experimental findings of the proposed method demonstrated a noteworthy classification accuracy of 97.84%, a precision success rate of 97.85%, a recall rate of 97.85%, and an F1-score of 97.90%. The results presented in this study showcase the exceptional accuracy of the proposed methodology in accurately classifying the most commonly occurring brain tumor types. The technique exhibited commendable generalization properties, rendering it a valuable asset in medicine for aiding physicians in making precise and proficient brain diagnoses.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Brain tumor classification in MRI image using convolutional neural network
    Khan, Hassan Ali
    Jue, Wu
    Mushtaq, Muhammad
    Mushtaq, Muhammad Umer
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (05) : 6203 - 6216
  • [2] Transfer Learning Using Convolutional Neural Network Architectures for Brain Tumor Classification from MRI Images
    Chelghoum, Rayene
    Ikhlef, Ameur
    Hameurlaine, Amina
    Jacquir, Sabir
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2020, PT I, 2020, 583 : 189 - 200
  • [3] A Robust Hybrid Convolutional Network for Tumor Classification Using Brain MRI Image Datasets
    Bansal, Satish
    Jadon, Rakesh S.
    Gupta, Sanjay K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (04) : 576 - 584
  • [4] Brain Tumor Classification of MRI Images Using Deep Convolutional Neural Network
    Kuraparthi, Swaraja
    Reddy, Madhavi K.
    Sujatha, C. N.
    Valiveti, Himabindu
    Duggineni, Chaitanya
    Kollati, Meenakshi
    Kora, Padmavathi
    Sravan, V
    TRAITEMENT DU SIGNAL, 2021, 38 (04) : 1171 - 1179
  • [5] Study on Brain Tumor Classification Through MRI Images Using a Deep Convolutional Neural Network
    Sharma, Kirti
    Khanna, Ketna
    Gambhir, Sapna
    Gambhir, Mohit
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (01)
  • [6] Brain Cancer Tumor Classification from Motion-Corrected MRI Images Using Convolutional Neural Network
    Mengash, Hanan Abdullah
    Mahmoud, Hanan A. Hosni
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (02): : 1551 - 1563
  • [7] Enhancement of brain tumor classification from MRI images using multi-path convolutional neural network with SVM classifier
    Khoramipour, Sahar
    Gandomkar, Mojtaba
    Shakiba, Mohsen
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 93
  • [8] Classification of Brain Tumours in MRI Images using a Convolutional Neural Network
    Gupta, Isha
    Singh, Swati
    Gupta, Sheifali
    Nayak, Soumya Ranjan
    CURRENT MEDICAL IMAGING, 2023, 20
  • [9] Brain Tumor Segmentation from MRI Images Using Handcrafted Convolutional Neural Network
    Ullah, Faizan
    Nadeem, Muhammad
    Abrar, Mohammad
    Al-Razgan, Muna
    Alfakih, Taha
    Amin, Farhan
    Salam, Abdu
    DIAGNOSTICS, 2023, 13 (16)
  • [10] Brain Tumor Detection using MRI Images and Convolutional Neural Network
    Lamrani, Driss
    Cherradi, Bouchaib
    El Gannour, Oussama
    Bouqentar, Mohammed Amine
    Bahatti, Lhoussain
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 452 - 460