LsmGANs: Image-Domain Least-Squares Migration Using a New Framework of Generative Adversarial Networks

被引:4
作者
Sun, Jiaxing [1 ]
Yang, Jidong [1 ]
Huang, Jianping [1 ]
Yu, Youcai [1 ]
Li, Zhenchun [1 ]
Zhao, Chong [1 ]
机构
[1] China Univ Petr, Sch Geosci, Natl Key Lab Deep Oil & Gas, Qingdao 266580, Shandong, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Generative adversarial networks; Reflectivity; Convolutional neural networks; Imaging; Reflection; Image resolution; Generators; Computational seismology; generative adversarial networks (GANs); Hessian approximation; image-domain least-squares migration (LSM); REVERSE-TIME MIGRATION; WAVE-EQUATION MIGRATION; LINEARIZED INVERSION; REFLECTION; AMPLITUDE; EXTRAPOLATION; OPTIMIZATION; SEPARATION;
D O I
10.1109/TGRS.2023.3304726
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Compared with the traditional adjoint migration, the least-squares migration (LSM) can effectively mitigate the unbalanced illumination and limited resolution associated with finite acquisition apertures, complex overburden structures, and band-limited records. Data-domain LSM needs many times of Born modeling and adjoint migration to converge to a good solution, which is still challenging for large-scale 3-D models under the current computational capacity. To reduce computational cost and produce high-quality images, we directly approximate the Hessian inverse in the image-domain LSM using a new framework of generative adversarial networks (GANs). The migrated images, source illumination, and migration velocity model are used as input data for the GANs, and the ground-truth reflectivity is utilized as the label data to train the network. Directly applying a conventional GAN framework to implement the image-domain LSM leads to dislocated reflection events and incorrect images. To overcome this issue, we develop a new GAN framework that is more suitable for the Hessian approximation of image-domain LSM, which is named as LsmGANs. In the new framework, we use max-pooling instead of convolution to downsample the feature maps to capture horizontal and vertical variations of reflectors. This enables us to map reflection events to the correct location in downsampling. To address the lateral discontinuity of events in the predicted image from conventional GANs, we further apply multiple transform layers to strengthen feature transformation to guide Hessian approximation. Finally, we add the skip connection in the transform layer to enhance the information exchange of the feature channels and avoid the gradient vanishing problem to improve image resolution. Assembling predicted patches to construct a whole reflectivity image is a key step in the neural network-based LSM. We investigate four strategies using different overlapping ratios and window functions to assemble the LSM patches and observe that less overlapping produces more patch-edge artifacts and the partition of unit with a Gaussian window has the best performance. Numerical experiments for synthetic and field data show that the proposed LsmGAN method can produce high-quality images with balanced amplitudes, reduced artifacts, and improved resolution.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] 3-D Least-Squares Reverse Time Migration in Curvilinear-τ Domain
    Qu, Yingming
    Ren, Jingru
    Huang, Chongpeng
    Li, Zhenchun
    Wang, Yixin
    Liu, Chang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [42] 2-D and 3-D Q-Compensated Image-Domain Least-Squares Reverse Time Migration Through the Hybrid Point Spread Functions and the Hybrid Deblurring Filter
    Zhang, Wei
    Gao, Jinghuai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [43] A new scheme of wavefield decomposed elastic least-squares reverse time migration
    Lv, Wenhao
    Du, Qizhen
    Fu, Li-Yun
    Li, Qingqing
    Zhang, Jianlei
    Zou, Zhen
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [44] An Enhancing Framework for Botnet Detection Using Generative Adversarial Networks
    Yin, Chuanlong
    Zhu, Yuefei
    Liu, Shengli
    Fei, Jinlong
    Zhang, Hetong
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD), 2018, : 228 - 234
  • [45] Least-squares reverse time migration method using the factorization of the Hessian matrix
    Sun Xiao-Dong
    Teng Hou-Hua
    Ren Li-Juan
    Wang Wei-Qi
    Li Zhen-Chun
    APPLIED GEOPHYSICS, 2021, 18 (01) : 94 - 100
  • [46] Least-squares reverse time migration method using the factorization of the Hessian matrix
    Sun Xiao-Dong
    Teng Hou-Hua
    Ren Li-Juan
    Wang Wei-Qi
    Li Zhen-Chun
    Applied Geophysics, 2021, 18 : 94 - 100
  • [47] Semi-supervised image attribute editing using generative adversarial networks
    Dogan, Yahya
    Keles, Hacer Yalim
    NEUROCOMPUTING, 2020, 401 (401) : 338 - 352
  • [48] Time-domain sparsity promoting least-squares reverse time migration with source estimation
    Yang, Mengmeng
    Fang, Zhilong
    Witte, Philipp
    Herrmann, Felix J.
    GEOPHYSICAL PROSPECTING, 2020, 68 (09) : 2697 - 2711
  • [49] Robust hyperspectral image classification using generative adversarial networks
    Yu, Ziru
    Cui, Wei
    INFORMATION SCIENCES, 2024, 666
  • [50] Frequency-domain double-plane-wave least-squares reverse time migration
    Zhao, Zeyu
    Sen, Mrinal K.
    GEOPHYSICAL PROSPECTING, 2019, 67 (08) : 2061 - 2084