The influence of Ex B drift on tungsten target erosion and W impurity transport during neon seeding on EAST

被引:7
作者
Wang, Yilin [1 ]
Sang, Chaofeng [1 ]
Zhao, Xuele [1 ]
Wu, Yihan [1 ]
Zhou, Qingrui [1 ]
Zhang, Yanjie [1 ]
Wang, Dezhen [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
tungsten divertor; neon seeding; target erosion; impurity transport; drifts; DIVERTOR; PLASMA;
D O I
10.1088/1741-4326/aceb09
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Mitigating tungsten (W) wall erosion and core accumulation are vitally important for the steady-state operation of tokamaks. It is well known that drifts have a great impact on the transport of charged particles in the edge region, which could affect W source and W impurity transport. In this work, SOLPS-ITER modeling is applied to study the W impurity behavior on EAST during neon seeding with the consideration of Ex B drift. The objective is to establish the relationship between the eroded W flux, W transport and the corresponding accumulation in the core in different discharge regimes. The effects of drift on W sputtering at targets and W impurity distribution in the cases of different toroidal magnetic field (B (t)) directions are assessed. The simulation results indicate that drift could influence W transport via W impurity retention and redistribution in the divertor, and the leakage from the divertor. In forward B (t) (Bx backward difference B points to the X-point), eroded W flux at the outer target is increased remarkably, and most of the W ions transport from the outer to the inner divertor and escape to the upstream region in the high field side. W ions mainly transport from the inner to the outer divertor and escape from the divertor in the low field side in reversed B (t) due to the opposite drift flux. The Ne puffing rate is scanned in forward B (t) and without-drift cases to further investigate the W erosion and W impurity transport in different divertor regimes. It is found that the W source from targets is generally enhanced by drift compared to cases without drift. The core accumulation, as well as poloidal asymmetry, is also influenced significantly by the drift. In the attached regime, the intense W source and strong drift flux lead to enhanced W accumulation in the core, and obvious poloidal asymmetry of W density distribution appears. The drift flux is reduced and W erosion is suppressed after detachment. W concentration in the core and poloidal asymmetry consequently decline. Therefore, adequate Ne impurity seeding can be applied to control the W accumulation in the core.
引用
收藏
页数:15
相关论文
共 39 条
[1]   Predictions of radiation pattern and in-out asymmetries in the DEMO scrape-off layer using fluid neutrals [J].
Aho-Mantila, L. ;
Subba, F. ;
Bernert, M. ;
Coster, D. P. ;
Wiesen, S. ;
Wischmeier, M. ;
Bonnin, X. ;
Brezinsek, S. ;
David, P. ;
Militello, F. .
NUCLEAR FUSION, 2022, 62 (05)
[2]   Full-tungsten plasma edge simulations with SOLPS [J].
Bonnin, X. ;
Coster, D. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S488-S491
[3]   Impurity leakage and radiative cooling in the first nitrogen and neon seeding study in the closed DIII-D SAS configuration [J].
Casali, L. ;
Eldon, D. ;
McLean, A. ;
Osborne, T. ;
Leonard, A. ;
Grierson, B. ;
Ren, J. .
NUCLEAR FUSION, 2022, 62 (02)
[4]   Influence of the E X B drift in high recycling divertors on target asymmetries [J].
Chankin, A. V. ;
Corrigan, G. ;
Groth, M. ;
Stangeby, P. C. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. ;
Axton, M. D. ;
Ayres, C. ;
Bachmann, C. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (09)
[5]  
Chankin AV, 1997, J NUCL MATER, V241, P199, DOI 10.1016/S0022-3115(96)00505-3
[6]   Plasma edge simulations including realistic wall geometry with SOLPS-ITER [J].
Dekeyser, W. ;
Boerner, P. ;
Voskoboynikov, S. ;
Rozhanksy, V. A. ;
Senichenkov, I. ;
Kaveeva, L. ;
Veselova, I. ;
Vekshina, E. ;
Bonnin, X. ;
Pitts, R. A. ;
Baelmans, M. .
NUCLEAR MATERIALS AND ENERGY, 2021, 27
[7]   Role of E x B on in-out divertor asymmetry in high recycling/partial detachment regimes under L-mode and H-mode conditions [J].
Du, Hailong ;
Sang, Chaofeng ;
Wang, Liang ;
Bonnin, Xavier ;
Wang, Huiqian ;
Sun, Jizhong ;
Wang, Dezhen .
NUCLEAR FUSION, 2017, 57 (11)
[8]   Effects of discharge operation regimes and magnetic field geometry on the in-out divertor asymmetry in EAST [J].
Du, Hailong ;
Sang, Chaofeng ;
Wang, Liang ;
Bonnin, Xavier ;
Sun, Jizhong ;
Wang, Dezhen .
FUSION ENGINEERING AND DESIGN, 2016, 109 :1005-1010
[9]  
Eckstein W., 1993, SPUTTERING DATA
[10]   Nitrogen-seeded divertor detachment in TCV L-mode plasmas [J].
Fevrier, O. ;
Theiler, C. ;
Harrison, J. R. ;
Tsui, C. K. ;
Verhaegh, K. ;
Wuethrich, C. ;
Boedo, J. A. ;
De Oliveira, H. ;
Duval, B. P. ;
Labit, B. ;
Lipschultz, B. ;
Maurizio, R. ;
Reimerdes, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (03)