AxoNet 2.0: A Deep Learning-Based Tool for Morphometric Analysis of Retinal Ganglion Cell Axons

被引:4
作者
Goyal, Vidisha [1 ]
Read, A. Thomas [2 ,3 ]
Ritch, Matthew D. [2 ,3 ]
Hannon, Bailey G. [4 ]
Rodriguez, Gabriela Sanchez [2 ,3 ]
Brown, Dillon M. [2 ,3 ]
Feola, Andrew J. [5 ,6 ]
Hedberg-Buenz, Adam [7 ,8 ,9 ]
Cull, Grant A. [10 ]
Reynaud, Juan [10 ]
Garvin, Mona K. [10 ,11 ]
Anderson, Michael G. [7 ,8 ,9 ]
Burgoyne, Claude F. [10 ]
Ethier, C. Ross [2 ,3 ,4 ,6 ,12 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA USA
[2] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA USA
[3] Emory Univ, Atlanta, GA USA
[4] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA USA
[5] Atlanta VA Healthcare Syst, Ctr Visual & Neurocognit Rehabil, Decatur, GA USA
[6] Emory Univ, Dept Ophthalmol, Atlanta, GA USA
[7] Univ Iowa, Dept Mol Physiol & Biophys, Iowa City, IA USA
[8] Iowa City VA Hlth Care Syst, Iowa City, IA USA
[9] Iowa City VA Ctr Prevent & Treatment Visual Loss, Iowa City, IA USA
[10] Legacy Res Inst, Devers Eye Inst, Portland, OR USA
[11] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA USA
[12] Georgia Inst Technol, 315 Ferst Dr, Room 2306, Atlanta, GA 30332 USA
来源
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY | 2023年 / 12卷 / 03期
关键词
deep learning; retinal ganglion cell morphology; glaucoma; OPTIC-NERVE; RAT MODEL; INTRAOCULAR-PRESSURE; GLAUCOMA; DIAMETER; ELEVATION; PATTERNS; COUNT;
D O I
10.1167/tvst.12.3.9
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: Assessment of glaucomatous damage in animal models is facilitated by rapid and accurate quantification of retinal ganglion cell (RGC) axonal loss and morphologic change. However, manual assessment is extremely time- and labor-intensive. Here, we developed AxoNet 2.0, an automated deep learning (DL) tool that (i) counts normalappearing RGC axons and (ii) quantifies their morphometry from light micrographs.Methods: A DL algorithm was trained to segment the axoplasm and myelin sheath of normal-appearing axons using manually-annotated rat optic nerve (ON) cross-sectional micrographs. Performance was quantified by various metrics (e.g., soft-Dice coefficient between predicted and ground-truth segmentations). We also quantified axon counts, axon density, and axon size distributions between hypertensive and control eyes and compared to literature reports.Results: AxoNet 2.0 performed very well when compared to manual annotations of rat ON (R2 = 0.92 for automated vs. manual counts, soft-Dice coefficient = 0.81 & PLUSMN; 0.02, mean absolute percentage error in axonal morphometric outcomes < 15%). AxoNet 2.0 also showed promise for generalization, performing well on other animal models (R2 = 0.97 between automated versus manual counts for mice and 0.98 for non-human primates). As expected, the algorithm detected decreased in axon density in hypertensive rat eyes (P << 0.001) with preferential loss of large axons (P < 0.001).Conclusions: AxoNet 2.0 provides a fast and nonsubjective tool to quantify both RGC axon counts and morphological features, thus assisting with assessing axonal damage in animal models of glaucomatous optic neuropathy.Translational Relevance: This deep learning approach will increase rigor of basic science studies designed to investigate RGC axon protection and regeneration.
引用
收藏
页数:16
相关论文
共 39 条
[1]   Axonopathy precedes cell death in ocular damage mediated by blast exposure [J].
Boehme, Nickolas A. ;
Hedberg-Buenz, Adam ;
Tatro, Nicole ;
Bielecki, Michael ;
Castonguay, William C. ;
Scheetz, Todd E. ;
Anderson, Michael G. ;
Dutca, Laura M. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[2]   The Cell and Molecular Biology of Glaucoma: Axonopathy and the Brain [J].
Calkins, David J. ;
Horner, Philip J. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (05) :2482-2484
[3]   Quantification of the efficacy of collagen cross-linking agents to induce stiffening of rat sclera [J].
Campbell, Ian C. ;
Hannon, Bailey G. ;
Read, A. Thomas ;
Sherwood, Joseph M. ;
Schwaner, Stephen A. ;
Ethier, C. Ross .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2017, 14 (129)
[4]   Semiquantitative optic nerve grading scheme for determining axonal loss in experimental optic neuropathy [J].
Chauhan, BC ;
LeVatte, TL ;
Garnier, KL ;
Tremblay, FO ;
Pang, IH ;
Clark, AF ;
Archibald, ML .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2006, 47 (02) :634-640
[5]  
Chauhan BC, 2002, INVEST OPHTH VIS SCI, V43, P2969
[6]  
DEJUAN J, 1978, ACTA ANAT, V102, P294
[7]   AxonDeep: Automated Optic Nerve Axon Segmentation in Mice With Deep Learning [J].
Deng, Wenxiang ;
Hedberg-Buenz, Adam ;
Soukup, Dana A. ;
Taghizadeh, Sima ;
Wang, Kai ;
Anderson, Michael G. ;
Garvin, Mona K. .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (14) :22
[8]   Estimation of axon counts in a rat model of glaucoma: comparison of fixed-pattern sampling with targeted sampling [J].
Ebneter, Andreas ;
Casson, Robert J. ;
Wood, John Pm ;
Chidlow, Glyn .
CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2012, 40 (06) :626-633
[9]   NERVE FIBRES IN OPTIC NERVE OF RAT [J].
FORRESTER, J ;
PETERS, A .
NATURE, 1967, 214 (5085) :245-+
[10]   STRAIN DIFFERENCES IN QUANTITATIVE-ANALYSIS OF THE RAT OPTIC-NERVE [J].
FUKUDA, Y ;
SUGIMOTO, T ;
SHIROKAWA, T .
EXPERIMENTAL NEUROLOGY, 1982, 75 (02) :525-532