Genetic algorithm for feature selection of EEG heterogeneous data

被引:12
作者
Saibene, Aurora [1 ]
Gasparini, Francesca
机构
[1] Univ Milano Bicocca, Multi Media Signal Proc Lab, Dept Informat Syst & Commun, Viale Sarca 336, I-20126 Milan, Italy
关键词
Electroencephalography; Evolutionary feature selection; Genetic algorithm; K-means clustering; Support vector machine; MOTOR IMAGERY; EMOTION RECOGNITION; CLASSIFICATION; TRANSFORM; INTERFACE; MACHINE;
D O I
10.1016/j.eswa.2022.119488
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Overview: The electroencephalographic (EEG) signals provide highly informative data on brain activities and functions. Therefore, it is possible to extract a great variety of features from these data. Problem: The heterogeneity and high dimensionality of the EEG signals may represent an obstacle for data interpretation. The introduction of a priori knowledge has been widely employed to mitigate high dimensionality problems, even though it could lose some information and patterns present in the data. Moreover, data heterogeneity remains an open issue that often makes generalization difficult.Methods: In this study, we propose the adoption of a Genetic Algorithm (GA) for feature selection, where we introduced a series of modifications on the stopping criteria and fitness functions only and that can be used with a supervised or unsupervised approach. Our proposal considers three different fitness functions without relying on expert knowledge. Starting from two publicly available datasets on cognitive workload and motor movement/imagery, the EEG signals are processed, normalized and their features computed in the time, frequency and time-frequency domains. The feature vector selection is performed by applying our GA proposal and compared with two benchmarking techniques, i.e., using the entire feature set and reducing it through principal component analysis.Results & Conclusions: Our proposal experiments achieve better results in respect to the benchmark in terms of overall performance and feature reduction. Moreover, the application of our novel fitness function outperforms the benchmark when the two considered datasets are merged together, showing the effectiveness of our proposal on heterogeneous data. The selected features are compliant with the neuroscientific literature regarding the considered experimental conditions. Future works will focus on providing a better scoring for the unsupervised technique, the hybrid use of the two approaches and the optimization of the GA parameters.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Feature Selection for Image Retrieval based on Genetic Algorithm
    Kushwaha, Preeti
    Welekar, R. R.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2016, 4 (02): : 16 - 21
  • [22] A Novel Genetic Algorithm Approach to Simultaneous Feature Selection and Instance Selection
    Albuquerque, Inti Mateus Resende
    Bach Hoai Nguyen
    Xue, Bing
    Zhang, Mengjie
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 616 - 623
  • [23] Hybrid Efficient Genetic Algorithm for Big Data Feature Selection Problems
    Mohammed, Tareq Abed
    Bayat, Oguz
    Ucan, Osman N.
    Alhayali, Shaymaa
    FOUNDATIONS OF SCIENCE, 2020, 25 (04) : 1009 - 1025
  • [24] A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection
    Rojas, Matias Gabriel
    Olivera, Ana Carolina
    Carballido, Jessica Andrea
    Vidal, Pablo Javier
    IEEE LATIN AMERICA TRANSACTIONS, 2020, 18 (11) : 1874 - 1883
  • [25] Feature Selection Algorithm for Evoked EEG Signal due to RGB Colors
    Alharbi, Eman T.
    Rasheed, Saim
    Buhari, Seyed M.
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 1503 - 1520
  • [26] Feature selection from microarray data : Genetic algorithm based approach
    Ram, Pintu Kumar
    Kuila, Pratyay
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (08) : 1599 - 1610
  • [27] Feature Selection for EEG Data Classification with Weka
    Murtazina, Marina
    Avdeenko, Tatiana
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2022, PT II, 2022, : 279 - 288
  • [28] Using a genetic algorithm and a perceptron for feature selection and supervised class learning in DNA microarray data
    Karzynski, M
    Mateos, A
    Herrero, J
    Dopazo, J
    ARTIFICIAL INTELLIGENCE REVIEW, 2003, 20 (1-2) : 39 - 51
  • [29] Feature Selection of EEG Oscillatory Activity Related to Motor Imagery Using a Hierarchical Genetic Algorithm
    Leon, Miguel
    Ballesteros, Joaquin
    Tidare, Jonatan
    Xiong, Ning
    Astrand, Elaine
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 87 - 94
  • [30] A New Feature Selection Algorithm for Stream Data Classification
    Wankhade, Kapil
    Rane, Dhiraj
    Thool, Ravindra
    2013 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2013, : 1843 - 1848