Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type

被引:12
|
作者
HamaRashid, Hawsar [1 ]
Srivastava, Hari Mohan [2 ,3 ,4 ,5 ]
Hama, Mudhafar [6 ]
Mohammed, Pshtiwan Othman [1 ]
Almusawa, Musawa Yahya [7 ]
Baleanu, Dumitru [8 ,9 ,10 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Iraq
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] Azerbaijan Univ, Dept Math & Informat, AZ-1007 Baku, Azerbaijan
[4] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[6] Univ Sulaimani, Coll Sci, Dept Math, Sulaimani 46001, Iraq
[7] Jazan Univ, Fac Sci, Dept Math, Jazan 45142, Saudi Arabia
[8] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye
[9] Inst Space Sci, R-76900 Magurele, Romania
[10] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022801, Lebanon
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 06期
关键词
boundary value problem; Arzela-Ascoli theorem; Krasnosel'skii theorem; nonlinear integro equation; HOMOTOPY PERTURBATION METHOD; DECOMPOSITION METHOD;
D O I
10.3934/math.2023745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study is devoted to examine the existence and uniqueness behavior of a nonlinear integro-differential equation of Volterra-Fredholm integral type in continues space. Then, we examine its solution by modification of Adomian and homotopy analysis methods numerically. Initially, the proposed model is reformulated into an abstract space, and the existence and uniqueness of solution is constructed by employing Arzela-Ascoli and Krasnoselskii fixed point theorems. Furthermore, suitable generation. At last, three test examples are presented to verify the established theoretical concepts.
引用
收藏
页码:14572 / 14591
页数:20
相关论文
共 50 条
  • [41] Operational Matrices to Solve Nonlinear Volterra-Fredholm Integro-Differential Equations of Multi-Arbitrary Order
    Parand, Kourosh
    Delkhosh, Mehdi
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2016, 29 (04): : 895 - 907
  • [42] A numerical approach for solving nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
    Sahu, P. K.
    Ray, S. Saha
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (05)
  • [43] Chebyshev wavelet method to nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
    Mohyud-Din, Syed Tauseef
    Khan, Hassan
    Arif, Muhammad
    Rafiq, Muhammad
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (03)
  • [44] Numerical solution of the mixed Volterra-Fredholm integro-differential multi-term equations of fractional order
    Roohollahi, A.
    Ghazanfari, B.
    Akhavan, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376 (376)
  • [45] Existence of Solution of Nonlinear Fuzzy Fredholm Integro-differential Equations
    Mosleh, M.
    Otadi, M.
    FUZZY INFORMATION AND ENGINEERING, 2016, 8 (01) : 17 - 30
  • [46] INTEGRO-DIFFERENTIAL EQUATIONS OF VOLTERRA TYPE
    RAO, MR
    TSOKOS, CP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 528 - &
  • [48] Existence and computational results to Volterra-Fredholm integro-differential equations involving delay term
    Amin, Rohul
    Ahmadian, Ali
    Alreshidi, Nasser Aedh
    Gao, Liping
    Salimi, Mehdi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [49] Theoretical and Numerical Studies of Fractional Volterra-Fredholm Integro-Differential Equations in Banach Space
    Alsa'di, K.
    Long, N. M. A. Nik
    Eshkuvatov, Z. K.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (03): : 469 - 489
  • [50] Analyzing existence, uniqueness, and stability of neutral fractional Volterra-Fredholm integro-differential equations
    Gunasekar, Tharmalingam
    Raghavendran, Prabakaran
    Santra, Shyam Sundar
    Sajid, Mohammad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (04): : 390 - 407