Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type

被引:12
|
作者
HamaRashid, Hawsar [1 ]
Srivastava, Hari Mohan [2 ,3 ,4 ,5 ]
Hama, Mudhafar [6 ]
Mohammed, Pshtiwan Othman [1 ]
Almusawa, Musawa Yahya [7 ]
Baleanu, Dumitru [8 ,9 ,10 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Iraq
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] Azerbaijan Univ, Dept Math & Informat, AZ-1007 Baku, Azerbaijan
[4] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[6] Univ Sulaimani, Coll Sci, Dept Math, Sulaimani 46001, Iraq
[7] Jazan Univ, Fac Sci, Dept Math, Jazan 45142, Saudi Arabia
[8] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye
[9] Inst Space Sci, R-76900 Magurele, Romania
[10] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022801, Lebanon
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 06期
关键词
boundary value problem; Arzela-Ascoli theorem; Krasnosel'skii theorem; nonlinear integro equation; HOMOTOPY PERTURBATION METHOD; DECOMPOSITION METHOD;
D O I
10.3934/math.2023745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study is devoted to examine the existence and uniqueness behavior of a nonlinear integro-differential equation of Volterra-Fredholm integral type in continues space. Then, we examine its solution by modification of Adomian and homotopy analysis methods numerically. Initially, the proposed model is reformulated into an abstract space, and the existence and uniqueness of solution is constructed by employing Arzela-Ascoli and Krasnoselskii fixed point theorems. Furthermore, suitable generation. At last, three test examples are presented to verify the established theoretical concepts.
引用
收藏
页码:14572 / 14591
页数:20
相关论文
共 50 条
  • [31] Solving Nonlinear Volterra-Fredholm Fuzzy Integro-differential Equations by Using Adomian Decomposition Method
    Georgieva, Atanaska
    Spasova, Mira
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [32] A new computational method for solution of non-linear Volterra-Fredholm integro-differential equations
    Maleknejad, K.
    Sohrabi, S.
    Derili, H.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (02) : 327 - 338
  • [33] On a New Class of Impulsive η-Hilfer Fractional Volterra-Fredholm Integro-Differential Equations
    Ismaael, F. M.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (04): : 691 - 704
  • [34] Existence and controllability results for neutral fractional Volterra-Fredholm integro-differential equations
    Gunasekar, Tharmalingam
    Raghavendran, Prabakaran
    Santra, Shyam Sundar
    Sajid, Mohammad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 34 (04): : 361 - 380
  • [35] Solving Fractional Volterra-Fredholm Integro-Differential Equations via A** Iteration Method
    Ofem, Austine Efut
    Hussain, Aftab
    Joseph, Oboyi
    Udo, Mfon Okon
    Ishtiaq, Umar
    Al Sulami, Hamed
    Chikwe, Chukwuka Fernando
    AXIOMS, 2022, 11 (09)
  • [36] Existence and uniqueness results of mild solutions for integro-differential Volterra-Fredholm equations
    Hussain, Khawlah Hashim
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (02): : 137 - 144
  • [37] Uniqueness and Stability Results for Caputo Fractional Volterra-Fredholm Integro-Differential Equations
    Hamoud, Ahmed A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (03): : 313 - 325
  • [38] A numerical approach for singularly perturbed reaction diffusion type Volterra-Fredholm integro-differential equations
    Muhammet Enes Durmaz
    Journal of Applied Mathematics and Computing, 2023, 69 : 3601 - 3624
  • [39] A numerical approach for singularly perturbed reaction diffusion type Volterra-Fredholm integro-differential equations
    Durmaz, Muhammet Enes
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (05) : 3601 - 3624
  • [40] Solving nonlinear Volterra-Fredholm integro-differential equations using He's variational iteration method
    Araghi, M. A. Fariborzi
    Behzadi, Sh. Sadigh
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (04) : 829 - 838