3DFlex: determining structure and motion of flexible proteins from cryo-EM

被引:78
|
作者
Punjani, Ali [1 ,2 ,3 ]
Fleet, David J. J. [1 ,2 ,4 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[2] Vector Inst Artificial Intelligence, Toronto, ON, Canada
[3] Struct Biotechnol Inc, Toronto, ON, Canada
[4] Google Res, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CONFORMATIONAL STATES; MACROMOLECULES; VARIABILITY; REFINEMENT;
D O I
10.1038/s41592-023-01853-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Modeling flexible macromolecules is one of the foremost challenges in single-particle cryogenic-electron microscopy (cryo-EM), with the potential to illuminate fundamental questions in structural biology. We introduce Three-Dimensional Flexible Refinement (3DFlex), a motion-based neural network model for continuous molecular heterogeneity for cryo-EM data. 3DFlex exploits knowledge that conformational variability of a protein is often the result of physical processes that transport density over space and tend to preserve local geometry. From two-dimensional image data, 3DFlex enables the determination of high-resolution 3D density, and provides an explicit model of a flexible protein's motion over its conformational landscape. Experimentally, for large molecular machines (tri-snRNP spliceosome complex, translocating ribosome) and small flexible proteins (TRPV1 ion channel, alpha V beta 8 integrin, SARS-CoV-2 spike), 3DFlex learns nonrigid molecular motions while resolving details of moving secondary structure elements. 3DFlex can improve 3D density resolution beyond the limits of existing methods because particle images contribute coherent signal over the conformational landscape. 3D Flexible Refinement (3DFlex) is a generative neural network model for continuous molecular heterogeneity for cryo-EM data that can be used to determine the structure and motion of flexible biomolecules. It enables visualization of nonrigid motion and improves 3D structure resolution by aggregating information from particle images spanning the conformational landscape of the target molecule.
引用
收藏
页码:860 / +
页数:18
相关论文
共 50 条
  • [1] Cryo_fit: Democratization of flexible fitting for cryo-EM
    Kim, Doo Nam
    Moriarty, Nigel W.
    Kirmizialtin, Serdal
    Afonine, Pavel, V
    Poon, Billy
    Sobolev, Oleg, V
    Adams, Paul D.
    Sanbonmatsu, Karissa
    JOURNAL OF STRUCTURAL BIOLOGY, 2019, 208 (01) : 1 - 6
  • [2] Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model
    Kim, Doo Nam
    Sanbonmatsu, Karissa Y.
    BIOSCIENCE REPORTS, 2017, 37
  • [3] A Bayesian View on Cryo-EM Structure Determination
    Scheres, Sjors H. W.
    JOURNAL OF MOLECULAR BIOLOGY, 2012, 415 (02) : 406 - 418
  • [4] The 3.3 Å structure of a plant geminivirus using cryo-EM
    Hesketh, Emma L.
    Saunders, Keith
    Fisher, Chloe
    Potze, Joran
    Stanley, John
    Lomonossoff, George P.
    Ranson, Neil A.
    NATURE COMMUNICATIONS, 2018, 9
  • [5] Atomic structure of Lanreotide nanotubes revealed by cryo-EM
    Pieri, Laura
    Wang, Fengbin
    Arteni, Ana-Andreea
    Vos, Matthijn
    Winter, Jean-Marie
    Le Du, Marie-Helene
    Artzner, Franck
    Gobeaux, Frederic
    Legrand, Pierre
    Boulard, Yves
    Bressanelli, Stephane
    Egelman, Edward H.
    Paternostre, Maite
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (04)
  • [6] Measurement of charges and chemical bonding in a cryo-EM structure
    Maki-Yonekura, Saori
    Kawakami, Keisuke
    Takaba, Kiyofumi
    Hamaguchi, Tasuku
    Yonekura, Koji
    COMMUNICATIONS CHEMISTRY, 2023, 6 (01)
  • [7] Cryo-EM structure of cortical microtubules from human parasite Toxoplasma gondii identifies their microtubule inner proteins
    Wang, Xiangli
    Fu, Yong
    Beatty, Wandy L.
    Ma, Meisheng
    Brown, Alan
    Sibley, L. David
    Zhang, Rui
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Validation of Cryo-EM Structure of IP3R1 Channel
    Murray, Stephen C.
    Flanagan, John
    Popova, Olga B.
    Chiu, Wah
    Ludtke, Steven J.
    Serysheva, Irina I.
    STRUCTURE, 2013, 21 (06) : 900 - 909
  • [9] Biophysical Screening Pipeline for Cryo-EM Grid Preparation of Membrane Proteins
    Niebling, Stephan
    Veith, Katharina
    Vollmer, Benjamin
    Lizarrondo, Javier
    Burastero, Osvaldo
    Schiller, Janina
    Garcia, Angelica Struve
    Lewe, Philipp
    Seuring, Carolin
    Witt, Susanne
    Garcia-Alai, Maria
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [10] 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM
    Punjani, Ali
    Fleet, David J.
    JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (02)