The Convergence of Euler-Maruyama Method of Differential Equations

被引:0
作者
Xu, Shanshan [1 ,2 ]
Wang, Lin [1 ,2 ]
Wang, Wenqiang [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-order Caputo fractional derivative; Stochastic differential equations; Euler-Maruyama method; convergence; multiplicative noise; VARIABLE-ORDER; NUMERICAL-SOLUTION; EXISTENCE;
D O I
10.4208/aamm.OA-2021-0222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the existence and uniqueness theorem of the solution of nonlinear variable-order fractional stochastic differential equations (VFS-DEs). We futher constructe the Euler-Maruyama method to solve the equations and prove the convergence in mean and the strong convergence of the method. In par-ticular, when the fractional order is no longer varying, the conclusions obtained are consistent with the relevant conclusions in the existing literature. Finally, the numeri-cal experiments at the end of the article verify the correctness of the theoretical results obtained.
引用
收藏
页码:852 / 879
页数:28
相关论文
共 37 条
[31]   Finite Element Methods for Nonlinear Backward Stochastic Partial Differential Equations and Their Error Estimates [J].
Yang, Xu ;
Zhao, Weidong .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (06) :1457-1480
[32]   Strong convergence of a Euler-Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise [J].
Yang, Zhiwei ;
Zheng, Xiangcheng ;
Zhang, Zhongqiang ;
Wang, Hong .
CHAOS SOLITONS & FRACTALS, 2021, 142
[33]   Numerical analysis of a new space-time variable fractional order advection-dispersion equation [J].
Zhang, H. ;
Liu, F. ;
Zhuang, P. ;
Turner, I. ;
Anh, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :541-550
[34]  
[张志强 Zhang Zhiqiang], 2020, [高等学校计算数学学报, Numerical Mathematics A Journal of Chinese University], V42, P328
[35]   Analysis of a nonlinear variable-order fractional stochastic differential equation [J].
Zheng, Xiangcheng ;
Zhang, Zhongqiang ;
Wang, Hong .
APPLIED MATHEMATICS LETTERS, 2020, 107
[36]   Explicit High Order One-Step Methods for Decoupled Forward Backward Stochastic Differential Equations [J].
Zhou, Quan ;
Sun, Yabing .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (06) :1293-1317
[37]  
[朱梦姣 Zhu Mengjiao], 2021, [计算数学, Mathematica Numerica Sinica], V43, P87