The Convergence of Euler-Maruyama Method of Differential Equations

被引:0
作者
Xu, Shanshan [1 ,2 ]
Wang, Lin [1 ,2 ]
Wang, Wenqiang [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-order Caputo fractional derivative; Stochastic differential equations; Euler-Maruyama method; convergence; multiplicative noise; VARIABLE-ORDER; NUMERICAL-SOLUTION; EXISTENCE;
D O I
10.4208/aamm.OA-2021-0222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the existence and uniqueness theorem of the solution of nonlinear variable-order fractional stochastic differential equations (VFS-DEs). We futher constructe the Euler-Maruyama method to solve the equations and prove the convergence in mean and the strong convergence of the method. In par-ticular, when the fractional order is no longer varying, the conclusions obtained are consistent with the relevant conclusions in the existing literature. Finally, the numeri-cal experiments at the end of the article verify the correctness of the theoretical results obtained.
引用
收藏
页码:852 / 879
页数:28
相关论文
共 37 条
[1]   A collocation-shooting method for solving fractional boundary value problems [J].
Al-Mdallal, Qasem M. ;
Syam, Muhammed I. ;
Anwar, M. N. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) :3814-3822
[2]  
Anh V., 2003, International Journal of Stochastic Analysis, V16, P97, DOI DOI 10.1155/S1048953303000078
[3]  
[Anonymous], 2011, Stochastic Models for Fractional Calculus
[4]  
Bandyopadhyay B, 2015, LECT NOTES ELECTR EN, V317, P1, DOI 10.1007/978-3-319-08621-7
[5]   Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients [J].
Benchaabane, Abbes ;
Sakthivel, Rathinasamy .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 :65-73
[6]   A high order numerical scheme for variable order fractional ordinary differential equation [J].
Cao, Jianxiong ;
Qiu, Yanan .
APPLIED MATHEMATICS LETTERS, 2016, 61 :88-94
[7]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[8]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[9]   Euler-Maruyama scheme for Caputo stochastic fractional differential equations [J].
Doan, T. S. ;
Huong, P. T. ;
Kloeden, P. E. ;
Vu, A. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380
[10]   Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions [J].
Guy, Jumarie .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (05) :836-859