Jinzhen Oral Liquid alleviates lipopolysaccharide-induced acute lung injury through modulating TLR4/MyD88/NF-κB pathway

被引:18
|
作者
Li, Ya-Ling [1 ,2 ]
Qin, Shu-Yan [1 ,2 ]
Li, Qian [1 ,2 ]
Song, Shao-Jiang [1 ,2 ]
Xiao, Wei [3 ]
Yao, Guo-Dong [1 ,2 ,3 ]
机构
[1] Shenyang Pharmaceut Univ, Engn Res Ctr Nat Med Act Mol Res & Dev Liaoning Pr, Key Lab Computat Chem Based Nat Antitumor Drug Res, Key Lab Nat Bioact Cpds Discovery & Modificat, Shenyang 110016, Liaoning, Peoples R China
[2] Shenyang Pharmaceut Univ, Sch Tradit Chinese Mat Med, Shenyang 110016, Liaoning, Peoples R China
[3] Jiangsu Kan Pharmaceut Co Ltd, State Key Lab New Tech Chinese Med Pharmaceut Proc, Liaoning 110016, Lianyungang 222001, Jiangsu, Peoples R China
关键词
Jinzhen oral liquid; Acute lung injury; Anti-inflammatory; TLR4/MyD88/NF-kappa B pathway; NF-KAPPA-B; RESPIRATORY-DISTRESS-SYNDROME; NETWORK PHARMACOLOGY; IDENTIFICATION; INFLAMMATION; BIOMARKERS; ENDOTOXIN; MYD88; TLR4;
D O I
10.1016/j.phymed.2023.154744
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Acute lung injury (ALI) has the attribution of excessive inflammation of the lung. Jinzhen oral liquid (JO), a famous Chinese recipe used to treat ALI, has a favorable therapeutic effect on ALI. However, its anti-inflammatory mechanism has not been extensively studied. Purpose: This study was to elucidate the effects of JO on lipopolysaccharide (LPS)-induced ALI and its molecular mechanism. Methods: An ALI model was established by intratracheal instillation of LPS (2 mg/50 mu l). The open field experiment was carried out to explore the spontaneous movement and exploratory behavior of ALI mice. Cy-tokines levels concentrations (IL-6, IL-10 and TNF-alpha) were determined by enzyme-linked immunosorbent assay (ELISA). Network pharmacology was used to predict the mechanism of JO against ALI. Immunofluorescence, co-immunoprecipitation, fluorescence resonance energy transfer (FRET), Western blot and RT-PCR were used to verify the molecular mechanisms of JO. Results: The in vivo results suggested that JO (1, 2, 4 g/kg) dose-dependently improved the exercise performance of mice and reduced the lung W/D weight ratio as well as the production of IL-6 and TNF-alpha, but increased the release of IL-10 in the ALI group. The network pharmacological analysis demonstrated that the Toll-like receptor (TLR) pathway might be the fundamental action mechanisms of JO against ALI. Immunofluorescence staining and co-immunoprecipitation analysis showed that JO decreased the expression levels of TLR4 and MyD88 and reduced their interaction in the lung tissue of ALI mice. Meanwhile, JO decreased nuclear translocation and phosphorylation of NF-kappa B P65. The results from cellular experiments were in line with those in vivo. The FRET experiment also confirmed that JO disturbed the interaction of TLR4 and MyD88. Subsequently, we also found that the six indicative components of JO have the similar therapeutic effect as JO. Conclusions: In summary, we suggested that JO suppressed the TLR4/MyD88/NF-kappa B signaling pathway, thus inhibiting LPS-induced ALI in vitro and in vivo. The clarified mechanism provided an important theoretical basis and a novel treatment strategy for the ALI treatment of JO.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Walnut oil alleviates LPS-induced intestinal epithelial cells injury by inhibiting TLR4/MyD88/NF-κB pathway activation
    Miao, Fujun
    Shan, Chunlan
    Ning, Delu
    JOURNAL OF FOOD BIOCHEMISTRY, 2021, 45 (11)
  • [42] Polygonatum sibiricum polysaccharides prevent LPS-induced acute lung injury by inhibiting inflammation via the TLR4/Myd88/NF-κB pathway
    Liu, Tian-Yin
    Zhao, Li-Li
    Chen, Shi-Biao
    Hou, Ben-Chao
    Huang, Jian
    Hong, Xiu
    Qing, Lian
    Fang, Yu
    Tao, Zhe
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 20 (04) : 3733 - 3739
  • [43] Bacillus coagulans alleviates intestinal barrier injury induced by Klebsiella pneumoniae in rabbits by regulating the TLR4/MyD88/NF-κB signalling pathway
    Wang, Jianing
    Zhang, Ziqiang
    Wang, Jiajia
    Shi, Lihui
    Wang, Shuaishuai
    Niu, Bingyu
    Tian, Xiaonuo
    Lv, Qiongxia
    Wei, Lan
    Li, Mengyun
    Liu, Yumei
    VETERINARY MICROBIOLOGY, 2025, 301
  • [44] Modified Pulsatilla decoction alleviates 5-fluorouracil-induced intestinal mucositis by modulating the TLR4/MyD88/NF-κB pathway and gut microbiota
    Qiu, Yi-Tong
    Luo, Xin-Yi
    Deng, Ya-Feng
    Zheng, Xue
    Qiu, Jian-Guo
    Zhang, Lin-Sheng
    Huang, Xiao-Qi
    Zheng, Xue-Bao
    Huang, Hai-Yang
    WORLD JOURNAL OF GASTROENTEROLOGY, 2025, 31 (07)
  • [45] Dexmedetomidine protects against lung injury induced by limb ischemia-reperfusion via the TLR4/MyD88/NF-κB pathway
    Xue, Bin-Bin
    Chen, Bai-Hui
    Tang, Ya-Ning
    Weng, Cheng-Wei
    Lin, Li-Na
    KAOHSIUNG JOURNAL OF MEDICAL SCIENCES, 2019, 35 (11): : 672 - 678
  • [46] Effect of dexmedetomidine on kidney injury in sepsis rats through TLR4/MyD88/NF-κB/iNOS signaling pathway
    Jin, Y-H
    Li, Z-T
    Chen, H.
    Jiang, X-Q
    Zhang, Y-Y
    Wu, F.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (11) : 5020 - 5025
  • [47] FGF10 Attenuates Experimental Traumatic Brain Injury through TLR4/MyD88/NF-κB Pathway
    Hou, Qinhan
    Chen, Hongmou
    Liu, Quan
    Yan, Xianlei
    CELLS TISSUES ORGANS, 2021, 209 (4-6) : 248 - 256
  • [48] Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway
    Yao, Hong
    Hu, Changsheng
    Yin, Lianhong
    Tao, Xufeng
    Xu, Lina
    Qi, Yan
    Han, Xu
    Xu, Youwei
    Zhao, Yanyan
    Wang, Changyuan
    Peng, Jinyong
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2016, 36 : 132 - 141
  • [49] Xianglian Pill attenuates ulcerative colitis through TLR4/MyD88/NF-κB signaling pathway
    Dai, Yuxin
    Lu, Qiulu
    Li, Peiyi
    Zhu, Junyu
    Jiang, Jiaxin
    Zhao, Tong
    Hu, Yue
    Ding, Kang
    Zhao, Min
    JOURNAL OF ETHNOPHARMACOLOGY, 2023, 300
  • [50] Emodin Attenuates Ozone-Induced Lung Injury Via TLR4/MYD88/NF-κB Signaling Pathways
    Dan Zeng
    Wei Xie
    Yang Xiang
    Meiling Tan
    Xiaoqun Qin
    Pharmaceutical Chemistry Journal, 2023, 57 : 957 - 964