Jinzhen Oral Liquid alleviates lipopolysaccharide-induced acute lung injury through modulating TLR4/MyD88/NF-κB pathway

被引:19
作者
Li, Ya-Ling [1 ,2 ]
Qin, Shu-Yan [1 ,2 ]
Li, Qian [1 ,2 ]
Song, Shao-Jiang [1 ,2 ]
Xiao, Wei [3 ]
Yao, Guo-Dong [1 ,2 ,3 ]
机构
[1] Shenyang Pharmaceut Univ, Engn Res Ctr Nat Med Act Mol Res & Dev Liaoning Pr, Key Lab Computat Chem Based Nat Antitumor Drug Res, Key Lab Nat Bioact Cpds Discovery & Modificat, Shenyang 110016, Liaoning, Peoples R China
[2] Shenyang Pharmaceut Univ, Sch Tradit Chinese Mat Med, Shenyang 110016, Liaoning, Peoples R China
[3] Jiangsu Kan Pharmaceut Co Ltd, State Key Lab New Tech Chinese Med Pharmaceut Proc, Liaoning 110016, Lianyungang 222001, Jiangsu, Peoples R China
关键词
Jinzhen oral liquid; Acute lung injury; Anti-inflammatory; TLR4/MyD88/NF-kappa B pathway; NF-KAPPA-B; RESPIRATORY-DISTRESS-SYNDROME; NETWORK PHARMACOLOGY; IDENTIFICATION; INFLAMMATION; BIOMARKERS; ENDOTOXIN; MYD88; TLR4;
D O I
10.1016/j.phymed.2023.154744
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Acute lung injury (ALI) has the attribution of excessive inflammation of the lung. Jinzhen oral liquid (JO), a famous Chinese recipe used to treat ALI, has a favorable therapeutic effect on ALI. However, its anti-inflammatory mechanism has not been extensively studied. Purpose: This study was to elucidate the effects of JO on lipopolysaccharide (LPS)-induced ALI and its molecular mechanism. Methods: An ALI model was established by intratracheal instillation of LPS (2 mg/50 mu l). The open field experiment was carried out to explore the spontaneous movement and exploratory behavior of ALI mice. Cy-tokines levels concentrations (IL-6, IL-10 and TNF-alpha) were determined by enzyme-linked immunosorbent assay (ELISA). Network pharmacology was used to predict the mechanism of JO against ALI. Immunofluorescence, co-immunoprecipitation, fluorescence resonance energy transfer (FRET), Western blot and RT-PCR were used to verify the molecular mechanisms of JO. Results: The in vivo results suggested that JO (1, 2, 4 g/kg) dose-dependently improved the exercise performance of mice and reduced the lung W/D weight ratio as well as the production of IL-6 and TNF-alpha, but increased the release of IL-10 in the ALI group. The network pharmacological analysis demonstrated that the Toll-like receptor (TLR) pathway might be the fundamental action mechanisms of JO against ALI. Immunofluorescence staining and co-immunoprecipitation analysis showed that JO decreased the expression levels of TLR4 and MyD88 and reduced their interaction in the lung tissue of ALI mice. Meanwhile, JO decreased nuclear translocation and phosphorylation of NF-kappa B P65. The results from cellular experiments were in line with those in vivo. The FRET experiment also confirmed that JO disturbed the interaction of TLR4 and MyD88. Subsequently, we also found that the six indicative components of JO have the similar therapeutic effect as JO. Conclusions: In summary, we suggested that JO suppressed the TLR4/MyD88/NF-kappa B signaling pathway, thus inhibiting LPS-induced ALI in vitro and in vivo. The clarified mechanism provided an important theoretical basis and a novel treatment strategy for the ALI treatment of JO.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hesperetin ameliorates lipopolysaccharide-induced acute lung injury in mice through regulating the TLR4-MyD88-NF-κB signaling pathway
    Wang, Naigang
    Geng, Cuiping
    Sun, Haiyun
    Wang, Xia
    Li, Fangmin
    Liu, Xunchao
    ARCHIVES OF PHARMACAL RESEARCH, 2019, 42 (12) : 1063 - 1070
  • [22] Curcumin alleviates traumatic brain injury induced by gas explosion through modulating gut microbiota and suppressing the LPS/TLR4/MyD88/NF-κB pathway
    Dong, Xinwen
    Deng, Lvfei
    Su, Yaguang
    Han, Xiaofeng
    Yao, Sanqiao
    Wu, Weidong
    Cao, Jia
    Tian, Linqiang
    Bai, Yichun
    Wang, Guizhi
    Ren, Wenjie
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (01) : 1094 - 1113
  • [23] Oleacein Attenuates Lipopolysaccharide-Induced Inflammation in THP-1-Derived Macrophages by the Inhibition of TLR4/MyD88/NF-κB Pathway †
    Cirmi, Santa
    Maugeri, Alessandro
    Russo, Caterina
    Musumeci, Laura
    Navarra, Michele
    Lombardo, Giovanni Enrico
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
  • [24] Sevoflurane alleviates LPS-induced acute lung injury via the microRNA-27a-3p/TLR4/MyD88/NF-κB signaling pathway
    Wang, Yunfei
    Zhang, Xiaoran
    Tian, Jianmin
    Liu, Guoze
    Li, Xiaofang
    Shen, Dan
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2019, 44 (02) : 479 - 490
  • [25] Polysaccharide of Atractylodes macrocephala Koidz alleviates NAFLD-induced hepatic inflammation in mice by modulating the TLR4/ MyD88/NF-κB pathway
    Chen, Junyi
    Yang, Shuzhan
    Luo, Hanxia
    Fu, Xinliang
    Li, Wanyan
    Li, Bingxin
    Fu, Cheng
    Chen, Feiyue
    Xu, Danning
    Cao, Nan
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2024, 141
  • [26] Baicalin Liposome Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Inhibiting TLR4/JNK/ERK/NF-κB Pathway
    Long, Yu
    Xiang, Yan
    Liu, Songyu
    Zhang, Yulu
    Wan, Jinyan
    Yang, Qiyue
    Cui, Mingquan
    Ci, Zhimin
    Li, Nan
    Peng, Wei
    MEDIATORS OF INFLAMMATION, 2020, 2020
  • [27] The regulatory effect of oxymatrine on the TLR4/MyD88/NF-κB signaling pathway in lipopolysaccharide-induced MS1 cells
    Lu Meili
    Zhang Qing
    Chen Kai
    Xu Wei
    Xiang Xiaohui
    Xia Shihai
    PHYTOMEDICINE, 2017, 36 : 153 - 159
  • [28] Wedelolactone Mitigates Alcoholic Steatohepatitis via Modulating the TLR4/MyD88/NF-κB Pathway
    Jiang, Tao
    Hu, Bingde
    Li, Yongxia
    Yu, Shuihong
    MEDIATORS OF INFLAMMATION, 2024, 2024
  • [29] Polygonatum sibiricum polysaccharides prevent LPS-induced acute lung injury by inhibiting inflammation via the TLR4/Myd88/NF-κB pathway
    Liu, Tian-Yin
    Zhao, Li-Li
    Chen, Shi-Biao
    Hou, Ben-Chao
    Huang, Jian
    Hong, Xiu
    Qing, Lian
    Fang, Yu
    Tao, Zhe
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 20 (04) : 3733 - 3739
  • [30] Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway
    Yao, Hong
    Hu, Changsheng
    Yin, Lianhong
    Tao, Xufeng
    Xu, Lina
    Qi, Yan
    Han, Xu
    Xu, Youwei
    Zhao, Yanyan
    Wang, Changyuan
    Peng, Jinyong
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2016, 36 : 132 - 141