Comprehensive Transcriptome and Metabolome Analysis of Hemp (Cannabis Sativa L.) in Soil Under NaCl Stress

被引:3
|
作者
Zhang, Ming [1 ]
Zhang, Liguo [2 ]
Wang, Guijiang [3 ]
Huang, Xutang [2 ]
Guo, Zhenhua [4 ,5 ]
机构
[1] Heilongjiang Acad Agr Sci Postdoctoral Programme, Harbin, Peoples R China
[2] Heilongjiang Acad Agr Sci, Ind Crop Inst, Harbin, Peoples R China
[3] Heilongjiang Acad Agr Sci, Harbin, Peoples R China
[4] Heilongjiang Acad Agr Sci, Anim Husb Res Inst, Key Lab Combining Farming & Anim Husb, Minist Agr & Rural Affairs, Harbin, Peoples R China
[5] Heilongjiang Acad Agr Sci, Anim Husb Res Inst, Key Lab Combining Farming & Anim Husb, Minist Agr & Rural Affairs, 368 Xuefu Rd, Harbin 150086, Peoples R China
关键词
Industrial hemp; MAPK; leaf; salt; stock; tolerance; ACCUMULATION; TOLERANCE; ACID;
D O I
10.1080/15440478.2023.2170948
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Planting economic crops in soil with salt imbalances can improve land use efficiency. Hemp, which can be planted in low-salinity soil, is a crop with a very high economic value. To reveal the salt tolerance mechanism of hemp, the leaves of Longma #3 and #9 were collected at 0, 2, 4, and 6 days after salt stress in this study, and transcriptome and metabolome joint analysis were performed. The concentration of glutamic acid, succinic acid and gamma-aminobutyric acid (GABA) was 12 times that of the control group. The large increase in succinic acid led to the maintenance of peroxidase and superoxide dismutase levels at normal values and a decrease in H2O2 and catalase. The enriched KEGG pathway citrate cycle (TCA cycle) contains the metabolic regulation of succinic acid. Succinic acid was positively correlated with the MAPK gene. The MAPK pathway is a key pathway of plant tolerance in a high-salt environment. This study provides a reference for research on NaCl tolerance in plants and can also provide an important reference for the cultivation of NaCl-tolerant hemp varieties.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hemp (Cannabis sativa L.)
    Grotenhermen, F.
    ZEITSCHRIFT FUR ARZNEI- & GEWURZPFLANZEN, 2021, 26 (01): : 29 - 33
  • [2] New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp)
    Pellati, Federica
    Brighenti, Virginia
    Sperlea, Johanna
    Marchetti, Lucia
    Bertelli, Davide
    Benvenuti, Stefania
    MOLECULES, 2018, 23 (10):
  • [3] ANALYSIS OF MICROSATELLITE MARKERS IN HEMP (CANNABIS SATIVA L.)
    Presinszka, Maria
    Stiasna, Klara
    Vyhnanek, Tomas
    Trojan, Vaclav
    Mrkvicova, Eva
    Hrivna, Ludek
    Havel, Ladislav
    MENDELNET 2015, 2015, : 434 - 438
  • [4] Micropropagation of Hemp (Cannabis sativa L.)
    Stephen, Conor
    Zayas, Victor A.
    Galic, Andrei
    Bridgen, Mark P.
    HORTSCIENCE, 2023, 58 (03) : 307 - 316
  • [5] Hemp (Cannabis sativa L.) and abortion
    Merzouki, A
    Ed-derfoufi, F
    Mesa, JM
    JOURNAL OF ETHNOPHARMACOLOGY, 2000, 73 (03) : 501 - 503
  • [6] EFFECTS OF ENVIRONMENTAL STRESS ON THE PRODUCTION OF ENERGY HEMP (CANNABIS SATIVA L.)
    Ivanyi, Ildiko
    CEREAL RESEARCH COMMUNICATIONS, 2009, 37 : 671 - 674
  • [7] Assessing the Impact of Drought Stress on Hemp (Cannabis sativa L.) Fibers
    Kwiatkowska, Edyta
    Zimniewska, Malgorzata
    Rozanska, Wanda
    Puchalski, Michal
    Przybylska, Patrycja
    MATERIALS, 2024, 17 (17)
  • [8] Proanthocyanidins Alleviate Cadmium Stress in Industrial Hemp (Cannabis sativa L.)
    Yin, Ming
    Pan, Langlang
    Liu, Junfei
    Yang, Xiaojuan
    Tang, Huijuan
    Zhou, Yuxin
    Huang, Siqi
    Pan, Gen
    PLANTS-BASEL, 2022, 11 (18):
  • [9] The comprehensive review about elements accumulation in industrial hemp (Cannabis sativa L.)
    Milan, Justyna
    Michalska, Agata
    Jurowski, Kamil
    FOOD AND CHEMICAL TOXICOLOGY, 2024, 184
  • [10] In Vitro Micropropagation of Hemp (Cannabis sativa L.)
    Stephen, Conor N.
    Bridgen, Mark
    HORTSCIENCE, 2021, 56 (09) : S99 - S100