Multitentacle Federated Learning Over Software-Defined Industrial Internet of Things Against Adaptive Poisoning Attacks

被引:45
作者
Li, Gaolei [1 ]
Wu, Jun [1 ]
Li, Shenghong [1 ]
Yang, Wu [2 ]
Li, Changlian [3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 200240, Peoples R China
[3] Informat Consulting & Designing Inst, Intelligent Network Design Inst, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential privacy (DP); multitentacle federated learning (MTFL); poisoning attacks; software-defined industrial Internet of Things (SD-IIoT); BACKDOOR; FRAMEWORK; DEFENSES;
D O I
10.1109/TII.2022.3173996
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Software-defined industrial Internet of things (SD-IIoT) exploits federated learning to process the sensitive data at edges, while adaptive poisoning attacks threat the security of SD-IIoT. To address this problem, this article proposes a multi-tentacle federated learning (MTFL) framework, which is essential to guarantee the trustness of training data in SD-IIoT. In MTFL, participants with similar learning tasks are assigned to the same tentacle group. To identify adaptive poisoning attacks, a tentacle distribution based efficient poisoning attack detection (TD-EPAD) algorithm is presented. And also, to minimize the impact of adaptive poisoning data, a stochastic tentacle data exchanging (STDE) protocol is also proposed. Simultaneously, to protect the tentacle's privacy in STDE, all exchanged data will be processed by differential privacy technology. A MTFL prototype system is implemented, which provides extensive ablation experiments and comparison experiments, demonstrating that the accuracy of the global model under attack scenario can be improved with 40%.
引用
收藏
页码:1260 / 1269
页数:10
相关论文
共 36 条
[21]   TrustFed: A Framework for Fair and Trustworthy Cross-Device Federated Learning in IIoT [J].
Rehman, Muhammad Habib ur ;
Dirir, Ahmed Mukhtar ;
Salah, Khaled ;
Damiani, Ernesto ;
Svetinovic, Davor .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (12) :8485-8494
[22]   Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints [J].
Sattler, Felix ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) :3710-3722
[23]  
Singh AK, 2020, PROC INT C TOOLS ART, P224, DOI [10.1109/ICTAI50040.2020.00044, 10.1007/978-981-15-6634-9_21]
[24]  
Steinhardt J, 2017, ADV NEUR IN, V30
[25]   Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks [J].
Wang, Bolun ;
Yao, Yuanshun ;
Shan, Shawn ;
Li, Huiying ;
Viswanath, Bimal ;
Zheng, Haitao ;
Zhao, Ben Y. .
2019 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2019), 2019, :707-723
[26]   Topology Poisoning Attack in SDN-Enabled Vehicular Edge Network [J].
Wang, Jiadai ;
Tan, Yawen ;
Liu, Jiajia ;
Zhang, Yanning .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) :9563-9574
[27]   Swarm Learning for decentralized and confidential clinical machine learning [J].
Warnat-Herresthal, Stefanie ;
Schultze, Hartmut ;
Shastry, Krishnaprasad Lingadahalli ;
Manamohan, Sathyanarayanan ;
Mukherjee, Saikat ;
Garg, Vishesh ;
Sarveswara, Ravi ;
Haendler, Kristian ;
Pickkers, Peter ;
Aziz, N. Ahmad ;
Ktena, Sofia ;
Tran, Florian ;
Bitzer, Michael ;
Ossowski, Stephan ;
Casadei, Nicolas ;
Herr, Christian ;
Petersheim, Daniel ;
Behrends, Uta ;
Kern, Fabian ;
Fehlmann, Tobias ;
Schommers, Philipp ;
Lehmann, Clara ;
Augustin, Max ;
Rybniker, Jan ;
Altmueller, Janine ;
Mishra, Neha ;
Bernardes, Joana P. ;
Kraemer, Benjamin ;
Bonaguro, Lorenzo ;
Schulte-Schrepping, Jonas ;
De Domenico, Elena ;
Siever, Christian ;
Kraut, Michael ;
Desai, Milind ;
Monnet, Bruno ;
Saridaki, Maria ;
Siegel, Charles Martin ;
Drews, Anna ;
Nuesch-Germano, Melanie ;
Theis, Heidi ;
Heyckendorf, Jan ;
Schreiber, Stefan ;
Kim-Hellmuth, Sarah ;
Nattermann, Jacob ;
Skowasch, Dirk ;
Kurth, Ingo ;
Keller, Andreas ;
Bals, Robert ;
Nuernberg, Peter ;
Riess, Olaf .
NATURE, 2021, 594 (7862) :265-+
[28]   Federated Learning With Differential Privacy: Algorithms and Performance Analysis [J].
Wei, Kang ;
Li, Jun ;
Ding, Ming ;
Ma, Chuan ;
Yang, Howard H. ;
Farokhi, Farhad ;
Jin, Shi ;
Quek, Tony Q. S. ;
Vincent Poor, H. .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 :3454-3469
[29]   With Great Dispersion Comes Greater Resilience: Efficient Poisoning Attacks and Defenses for Linear Regression Models [J].
Wen, Jialin ;
Zhao, Benjamin Zi Hao ;
Xue, Minhui ;
Oprea, Alina ;
Qian, Haifeng .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 :3709-3723
[30]   Privacy-Preserving Deep Action Recognition: An Adversarial Learning Framework and A New Dataset [J].
Wu, Zhenyu ;
Wang, Haotao ;
Wang, Zhaowen ;
Jin, Hailin ;
Wang, Zhangyang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (04) :2126-2139