Multimodal attention-based deep learning for automatic modulation classification

被引:2
|
作者
Han, Jia [1 ]
Yu, Zhiyong [1 ]
Yang, Jian [2 ]
机构
[1] Rocket Force Univ Engn, Dept Comp, Xian, Shaanxi, Peoples R China
[2] Rocket Force Univ Engn, Dept Engn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Internet of things; automatic modulation classification; auto-encoder; deep learning; spectrum sensing; RECOGNITION; ALGORITHMS;
D O I
10.3389/fenrg.2022.1041862
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wireless Internet of Things (IoT) is widely accepted in data collection and transmission of power system, with the prerequisite that the base station of wireless IoT be compatible with a variety of digital modulation types to meet data transmission requirements of terminals with different modulation modes. As a key technology in wireless IoT communication, Automatic Modulation Classification (AMC) manages resource shortage and improves spectrum utilization efficiency. And for better accuracy and efficiency in the classification of wireless signal modulation, Deep learning (DL) is frequently exploited. It is found in real cases that the signal-to-noise ratio (SNR) of wireless signals received by base station remains low due to complex electromagnetic interference from power equipment, increasing difficulties for accurate AMC. Therefore, inspired by attention mechanism of multi-layer perceptron (MLP), AMC-MLP is introduced herein as a novel AMC method for low SNR signals. Firstly, the sampled I/Q data is converted to constellation diagram, smoothed pseudo Wigner-Ville distribution (SPWVD), and contour diagram of the spectral correlation function (SCF). Secondly, convolution auto-encoder (Conv-AE) is used to denoise and extract image feature vectors. Finally, MLP is employed to fuse multimodal features to classify signals. AMC-MLP model utilizes the characterization advantages of feature images in different modulation modes and boosts the classification accuracy of low SNR signals. Results of simulations on RadioML 2016.10A public dataset prove as well that AMC-MLP provides significantly better classification accuracy of signals in low SNR range than that of other latest deep-learning AMC methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Automatic Modulation Classification Based on Constellation Density Using Deep Learning
    Kumar, Yogesh
    Sheoran, Manu
    Jajoo, Gaurav
    Yadav, Sandeep Kumar
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (06) : 1275 - 1278
  • [32] Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles
    Zhang, Duona
    Ding, Wenrui
    Zhang, Baochang
    Xie, Chunyu
    Li, Hongguang
    Liu, Chunhui
    Han, Jungong
    SENSORS, 2018, 18 (03)
  • [33] Autocorrelation Convolution Networks Based on Deep Learning for Automatic Modulation Classification
    Zhang, Duona
    Ding, Wenrui
    Wang, Hongyu
    Zhang, Baochang
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1561 - 1565
  • [34] Dive Into Deep Learning Based Automatic Modulation Classification: A Disentangled Approach
    Shang, Xiaolei
    Hu, Honglin
    Li, Xiaoqiang
    Xu, Tianheng
    Zhou, Ting
    IEEE ACCESS, 2020, 8 : 113271 - 113284
  • [35] Attention-based label consistency for semi-supervised deep learning based image classification
    Chen, Jiaming
    Yang, Meng
    Ling, Jie
    NEUROCOMPUTING, 2021, 453 : 731 - 741
  • [36] Deep Learning based Automatic Modulation Classification for Varying SNR Environment
    Xie, Xiaojuan
    Ni, Yanqin
    Peng, Shengliang
    Yao, Yu-Dong
    2019 28TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2019, : 18 - 22
  • [37] Attention-based multiscale deep learning with unsampled pixel utilization for hyperspectral image classification
    AL-Kubaisi, Mohammed Ahmed
    Shafri, Helmi Z. M.
    Ismail, Mohd Hasmadi
    Yusof, Mohd Johari Mohd
    bin Hashim, Shaiful Jahari
    GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [38] BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals
    Udaiwal, Rohit
    Baishya, Nayan
    Gupta, Yash
    Manoj, B. R.
    2024 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS, SPCOM 2024, 2024,
  • [39] Attention-based Deep Learning for Network Intrusion Detection
    Guo, Naiwang
    Tian, Yingjie
    Li, Fan
    Yang, Hongshan
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [40] Deep Learning of Automatic Encoder Based on Attention for ADHD Classification of Brain MRI
    Chen, Nan
    Jiao, Yun
    2023 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND APPLICATIONS, ICBEA, 2023, : 11 - 14