Multimodal attention-based deep learning for automatic modulation classification

被引:2
|
作者
Han, Jia [1 ]
Yu, Zhiyong [1 ]
Yang, Jian [2 ]
机构
[1] Rocket Force Univ Engn, Dept Comp, Xian, Shaanxi, Peoples R China
[2] Rocket Force Univ Engn, Dept Engn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Internet of things; automatic modulation classification; auto-encoder; deep learning; spectrum sensing; RECOGNITION; ALGORITHMS;
D O I
10.3389/fenrg.2022.1041862
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wireless Internet of Things (IoT) is widely accepted in data collection and transmission of power system, with the prerequisite that the base station of wireless IoT be compatible with a variety of digital modulation types to meet data transmission requirements of terminals with different modulation modes. As a key technology in wireless IoT communication, Automatic Modulation Classification (AMC) manages resource shortage and improves spectrum utilization efficiency. And for better accuracy and efficiency in the classification of wireless signal modulation, Deep learning (DL) is frequently exploited. It is found in real cases that the signal-to-noise ratio (SNR) of wireless signals received by base station remains low due to complex electromagnetic interference from power equipment, increasing difficulties for accurate AMC. Therefore, inspired by attention mechanism of multi-layer perceptron (MLP), AMC-MLP is introduced herein as a novel AMC method for low SNR signals. Firstly, the sampled I/Q data is converted to constellation diagram, smoothed pseudo Wigner-Ville distribution (SPWVD), and contour diagram of the spectral correlation function (SCF). Secondly, convolution auto-encoder (Conv-AE) is used to denoise and extract image feature vectors. Finally, MLP is employed to fuse multimodal features to classify signals. AMC-MLP model utilizes the characterization advantages of feature images in different modulation modes and boosts the classification accuracy of low SNR signals. Results of simulations on RadioML 2016.10A public dataset prove as well that AMC-MLP provides significantly better classification accuracy of signals in low SNR range than that of other latest deep-learning AMC methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Attention-based Deep Learning for Visual Servoing
    Wang, Bo
    Li, Yuan
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4388 - 4393
  • [22] Attention-Based Ensemble for Deep Metric Learning
    Kim, Wonsik
    Goyal, Bhavya
    Chawla, Kunal
    Lee, Jungmin
    Kwon, Keunjoo
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 760 - 777
  • [23] Attention-based Deep Multiple Instance Learning
    Ilse, Maximilian
    Tomczak, Jakub M.
    Welling, Max
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [24] Attention-Based Multimodal Neural Network for Automatic Evaluation of Press Conferences
    Yi, Shengzhou
    Mochitomi, Koshiro
    Suzuki, Isao
    Wang, Xueting
    Yamasaki, Toshihiko
    INTERNATIONAL JOURNAL OF MULTIMEDIA DATA ENGINEERING & MANAGEMENT, 2020, 11 (03): : 1 - 19
  • [25] MedFuseNet: An attention-based multimodal deep learning model for visual question answering in the medical domain
    Dhruv Sharma
    Sanjay Purushotham
    Chandan K. Reddy
    Scientific Reports, 11
  • [26] MedFuseNet: An attention-based multimodal deep learning model for visual question answering in the medical domain
    Sharma, Dhruv
    Purushotham, Sanjay
    Reddy, Chandan K.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Attention-based convolutional neural network deep learning approach for robust malware classification
    Ravi, Vinayakumar
    Alazab, Mamoun
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (01) : 145 - 168
  • [28] Enhancing intra-aural disease classification with attention-based deep learning models
    Furkancan Demircan
    Murat Ekinci
    Zafer Cömert
    Neural Computing and Applications, 2025, 37 (9) : 6601 - 6616
  • [29] A Lightweight Moving Vehicle Classification System Through Attention-Based Method and Deep Learning
    Nasaruddin, Nasaruddin
    Muchtar, Kahlil
    Afdhal, Afdhal
    IEEE ACCESS, 2019, 7 : 157564 - 157573
  • [30] Multiscale Correlation Networks Based on Deep Learning for Automatic Modulation Classification
    Xiao, Jing
    Wang, Yufeng
    Zhang, Duona
    Ma, Qinyan
    Ding, Wenrui
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 633 - 637