Multimodal attention-based deep learning for automatic modulation classification

被引:2
|
作者
Han, Jia [1 ]
Yu, Zhiyong [1 ]
Yang, Jian [2 ]
机构
[1] Rocket Force Univ Engn, Dept Comp, Xian, Shaanxi, Peoples R China
[2] Rocket Force Univ Engn, Dept Engn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Internet of things; automatic modulation classification; auto-encoder; deep learning; spectrum sensing; RECOGNITION; ALGORITHMS;
D O I
10.3389/fenrg.2022.1041862
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wireless Internet of Things (IoT) is widely accepted in data collection and transmission of power system, with the prerequisite that the base station of wireless IoT be compatible with a variety of digital modulation types to meet data transmission requirements of terminals with different modulation modes. As a key technology in wireless IoT communication, Automatic Modulation Classification (AMC) manages resource shortage and improves spectrum utilization efficiency. And for better accuracy and efficiency in the classification of wireless signal modulation, Deep learning (DL) is frequently exploited. It is found in real cases that the signal-to-noise ratio (SNR) of wireless signals received by base station remains low due to complex electromagnetic interference from power equipment, increasing difficulties for accurate AMC. Therefore, inspired by attention mechanism of multi-layer perceptron (MLP), AMC-MLP is introduced herein as a novel AMC method for low SNR signals. Firstly, the sampled I/Q data is converted to constellation diagram, smoothed pseudo Wigner-Ville distribution (SPWVD), and contour diagram of the spectral correlation function (SCF). Secondly, convolution auto-encoder (Conv-AE) is used to denoise and extract image feature vectors. Finally, MLP is employed to fuse multimodal features to classify signals. AMC-MLP model utilizes the characterization advantages of feature images in different modulation modes and boosts the classification accuracy of low SNR signals. Results of simulations on RadioML 2016.10A public dataset prove as well that AMC-MLP provides significantly better classification accuracy of signals in low SNR range than that of other latest deep-learning AMC methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Automatic Modulation Classification in Deep Learning
    Alnajjar, Khawla A.
    Ghunaim, Sara
    Ansari, Sam
    2022 5TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND THEIR APPLICATIONS (ICCSPA), 2022,
  • [2] Frequency learning attention networks based on deep learning for automatic modulation classification in wireless communication
    Zhang, Duona
    Lu, Yuanyao
    Li, Yundong
    Ding, Wenrui
    Zhang, Baochang
    Xiao, Jing
    PATTERN RECOGNITION, 2023, 137
  • [3] Multimodal attention-based deep learning for Alzheimer's disease diagnosis
    Golovanevsky, Michal
    Eickhoff, Carsten
    Singh, Ritambhara
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (12) : 2014 - 2022
  • [4] Automatic Modulation Classification: A Deep Learning Enabled Approach
    Meng, Fan
    Chen, Peng
    Wu, Lenan
    Wang, Xianbin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (11) : 10760 - 10772
  • [5] Imperceptible UAPs for Automatic Modulation Classification Based on Deep Learning
    Xu, Dongwei
    Li, Jiangpeng
    Chen, Zhuangzhi
    Xuan, Qi
    Shen, Weiguo
    Yang, Xiaoniu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (02) : 987 - 991
  • [6] A lightweight deep learning architecture for automatic modulation classification of wireless internet of things
    Han, Jia
    Yu, Zhiyong
    Yang, Jian
    IET COMMUNICATIONS, 2024, 18 (18) : 1220 - 1230
  • [7] Automatic Modulation Classification of Cochannel Signals using Deep Learning
    Sun, Jiajun
    Wang, Guohua
    Lin, Zhiping
    Razul, Sirajudeen Gulam
    Lai, Xiaoping
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [8] Knowledge Embedding Networks Based on Deep Learning for Automatic Modulation Classification in Cognitive Radio
    Zhang, Duona
    Lu, Yuanyao
    Ding, Wenrui
    Li, Yundong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (12) : 7814 - 7825
  • [9] Deep Learning-Based Automatic Modulation Classification With Blind OFDM Parameter Estimation
    Park, Myung Chul
    Han, Dong Seog
    IEEE ACCESS, 2021, 9 : 108305 - 108317
  • [10] Multiscale Correlation Networks Based on Deep Learning for Automatic Modulation Classification
    Xiao, Jing
    Wang, Yufeng
    Zhang, Duona
    Ma, Qinyan
    Ding, Wenrui
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 633 - 637