An efficient computational offloading framework using HAA optimization-based deep reinforcement learning in edge-based cloud computing architecture

被引:3
|
作者
Saranya, G. [1 ]
Sasikala, E. [2 ]
机构
[1] SRM Inst Sci & Technol, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Data Sci & Business Syst, Chennai, Tamil Nadu, India
关键词
Computation offloading; Edge computing; Deep reinforcement learning; Arithmetic optimization; Archimedes optimization algorithm; RESOURCE-ALLOCATION; MOBILE;
D O I
10.1007/s10115-022-01746-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mobile Cloud Computing (MCC) has emerged as a popular model for bringing the benefits of cloud computing to the proximity of mobile devices. MCC's preliminary goal is to improve service availability as well as performance and mobility features. Edge computing, a novel paradigm, provides rich computing capabilities at the edge of pervasive radio access networks close to users. Designing an efficient offloading technique for edge computing is a major research challenge given the constrained resources. Offloading speeds up processing, which has an impact on service quality in heterogeneous devices. Due to the difficulties of the network states' distribution environment, allocating computing resources is a difficult process. In this study, inputs from various sorts of devices such as cars, mobile phones, and heterogeneous building sources are considered. When an accurate energy estimation model is established to compute the energy consumption of the tasks during offloading, an effective task offloading technique can be derived. The model should select whether or not to conduct offloading based on the computed energy cost. This study proposed a Hybrid Arithmetic Archimedes Optimization algorithm-based Deep Reinforcement Learning model for computation offloading in heterogeneous devices. The effectiveness of the proposed method is evaluated using different state-of-art methods such as First Upload Round and Second Upload Round (FUR-SUR), Efficient Dynamic-Decision Based Task Scheduler, Context-aware computation offloading and Price-based distributed offloading. The proposed method offers superior results to other existing methods. The user's average utility of the proposed method increases by 410% contrasted to FUR-SUR.
引用
收藏
页码:409 / 433
页数:25
相关论文
共 50 条
  • [41] A Survey of Computational Offloading in Cloud/Edge-based Architectures: Strategies, Optimization Models and Challenges
    Alqarni, Manal M.
    Cherif, Asma
    Alkayal, Entisar
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (03) : 952 - 973
  • [42] Reinforcement Learning Based Offloading Framework for Computation Service in the Edge Cloud and Core Cloud
    Muslim, Nasif
    Islam, Salekul
    Gregoire, Jean-Charles
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2022, 13 (02) : 139 - 146
  • [43] Deep reinforcement learning-based dynamical task offloading for mobile edge computing
    Xie, Bo
    Cui, Haixia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [44] Multi-Agent Deep Reinforcement Learning for Cooperative Computing Offloading and Route Optimization in Multi Cloud-Edge Networks
    Suzuki, Akito
    Kobayashi, Masahiro
    Oki, Eiji
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (04): : 4416 - 4434
  • [45] Joint Offloading and Resource Allocation Using Deep Reinforcement Learning in Mobile Edge Computing
    Zhang, Xinjie
    Zhang, Xinglin
    Yang, Wentao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3454 - 3466
  • [46] Deep Reinforcement Learning-Based Computation Offloading for Mobile Edge Computing in 6G
    Sun, Haifeng
    Wang, Jiawei
    Yong, Dongping
    Qin, Mingwei
    Zhang, Ning
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7482 - 7493
  • [47] A Multimodel Edge Computing Offloading Framework for Deep-Learning Application Based on Bayesian Optimization
    Zhao, Zidi
    Zhang, Hong
    Wang, Liqiang
    Huang, Haijun
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (20) : 18387 - 18399
  • [48] Deep Reinforcement Learning-based Task Offloading in Satellite-Terrestrial Edge Computing Networks
    Zhu, Dali
    Liu, Haitao
    Li, Ting
    Sun, Jiyan
    Liang, Jie
    Zhang, Hangsheng
    Geng, Liru
    Liu, Yudong
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [49] Deep reinforcement learning based offloading decision algorithm for vehicular edge computing
    Hu, Xi
    Huang, Yang
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [50] Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu H.
    Gu C.
    Luo F.
    Ding W.
    Yang T.
    Zheng S.
    Gu, Chunhua (chgu@ecust.edu.cn), 1600, Science Press (57): : 1539 - 1554