Gap statistics and higher correlations for geometric progressions modulo one

被引:4
作者
Aistleitner, Christoph [1 ]
Baker, Simon [2 ]
Technau, Niclas [3 ,4 ]
Yesha, Nadav [5 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Steyrergasse 30, A-8010 Graz, Austria
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
[5] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
基金
欧洲研究理事会; 奥地利科学基金会; 以色列科学基金会;
关键词
FRACTIONAL-PARTS; PAIR CORRELATION; UNIFORM-DISTRIBUTION; ROOT-N; SPACINGS; POWERS;
D O I
10.1007/s00208-022-02362-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Koksma's equidistribution theorem from 1935 states that for Lebesgue almost every alpha > 1, the fractional parts of the geometric progression (alpha(n))(n >= 1) are equidistributed modulo one. In the present paper we sharpen this result by showing that for almost every alpha > 1, the correlations of all finite orders and hence the normalized gaps of (alpha(n))(n >= 1) mod 1 converge to the Poissonian model, thereby resolving a conjecture of the two first named authors. While an earlier approach used probabilistic methods in the form of martingale approximation, our reasoning in the present paper is of an analytic nature and based upon the estimation of oscillatory integrals. This method is robust enough to allow us to extend our results to a natural class of sub-lacunary sequences.
引用
收藏
页码:845 / 861
页数:17
相关论文
共 33 条
[1]   On the pair correlations of powers of real numbers [J].
Aistleitner, Christoph ;
Baker, Simon .
ISRAEL JOURNAL OF MATHEMATICS, 2021, 242 (01) :243-268
[2]   Pair correlations and equidistribution [J].
Aistleitner, Christoph ;
Lachmann, Thomas ;
Pausinger, Florian .
JOURNAL OF NUMBER THEORY, 2018, 182 :206-220
[3]   Quantitative uniform distribution results for geometric progressions [J].
Aistleitner, Christoph .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 204 (01) :155-197
[4]   Equidistribution Results for Self-Similar Measures [J].
Baker, Simon .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (16) :12378-12401
[5]  
Bugeaud Y., 2012, Distribution modulo one and Diophantine approximation, V193, pxvi+300, DOI DOI 10.1017/CBO9781139017732
[6]  
Cobeli C, 1998, ACTA ARITH, V83, P143
[7]   On the powers of 3/2 and other rational numbers [J].
Dubickas, Arturas .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (07) :951-958
[8]   Powers of a rational number modulo 1 cannot lie in a small interval [J].
Dubickas, Arturas .
ACTA ARITHMETICA, 2009, 137 (03) :233-239
[9]   THE TWO-POINT CORRELATION FUNCTION OF THE FRACTIONAL PARTS OF √n IS POISSON [J].
El-Baz, Daniel ;
Marklof, Jens ;
Vinogradov, Ilya .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) :2815-2828
[10]   Gaps in √n mod 1 and ergodic theory [J].
Elkies, ND ;
McMullen, CT .
DUKE MATHEMATICAL JOURNAL, 2004, 123 (01) :95-139