Improved Bohr inequalities for certain class of harmonic univalent functions

被引:9
作者
Ahamed, Molla Basir [1 ]
Allu, Vasudevarao [1 ]
Halder, Himadri [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar, India
关键词
Analytic; univalent; harmonic functions; starlike; convex; close-to-convex functions; coefficient estimate; growth theorem; Bohr radius; POWER-SERIES; THEOREM; BASES;
D O I
10.1080/17476933.2021.1988583
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be the class of complex-valued harmonic mappings f = h + (g) over bar defined in the unit disk D := {z is an element of C : vertical bar z vertical bar < 1}, where h and g are analytic functions in D with the normalization h(0) = 0 = h'(0) - 1 and g(0) = 0. Let H-0 = {f = h + <(g)over bar> is an element of H: g'(0) = 0}. Let P-H(0)(M) := {f = h+ (g) over bar is an element of H-0 : Re (zh '' (Z))( > -M + vertical bar Zg ''(z)vertical bar, z is an element of D and M > 0}.) be the class of harmonic univalent mappings in the unit disk D, [Ghosh N, Allu V. On some subclasses of harmonic mappings. Bull Aust Math Soc. 2020;101:130-140.]. In this paper, we obtain the sharp Bohr-Rogosinski inequality, improved Bohr inequality, refined Bohr inequality and Bohr-type inequality for the class P-H(0)(M).
引用
收藏
页码:267 / 290
页数:24
相关论文
共 50 条
[31]   Maximal Area Integral Problem for Certain Class of Univalent Analytic Functions [J].
Ponnusamy, Saminathan ;
Sahoo, Swadesh Kumar ;
Sharma, Navneet Lal .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) :607-623
[32]   Maximal Area Integral Problem for Certain Class of Univalent Analytic Functions [J].
Saminathan Ponnusamy ;
Swadesh Kumar Sahoo ;
Navneet Lal Sharma .
Mediterranean Journal of Mathematics, 2016, 13 :607-623
[33]   CERTAIN PROPERTIES OF THE CLASS OF UNIVALENT FUNCTIONS WITH REAL COEFFICIENTS [J].
Obradovic, Milutin ;
Tuneski, Nikola .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) :1253-1263
[34]   Certain Class of Close-to-Convex Univalent Functions [J].
Alhily, Shatha S. ;
Lupas, Alina Alb .
SYMMETRY-BASEL, 2023, 15 (09)
[35]   Some relations between certain inequalities concerning analytic and univalent functions [J].
Irmak, Hueseyin ;
San, Muefit .
APPLIED MATHEMATICS LETTERS, 2010, 23 (08) :897-901
[36]   Bohr Radius for Certain Analytic Functions [J].
Jain, Naveen Kumar ;
Yadav, Shalu .
MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 :211-221
[37]   On a Class of Certain Non-univalent Functions [J].
Kumar, S. Sivaprasad ;
Yadav, Pooja .
IRANIAN JOURNAL OF SCIENCE, 2024, 48 (03) :785-793
[38]   Improved Bohr inequality for harmonic mappings [J].
Liu, Gang ;
Ponnusamy, Saminathan .
MATHEMATISCHE NACHRICHTEN, 2023, 296 (02) :716-731
[39]   Certain Subclasses of Harmonic Univalent Functions Defined by Subordination [J].
Cakmak, S. ;
Yalcin, S. ;
Altinkaya, S. .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (01) :43-56
[40]   Bohr-type inequalities of analytic functions [J].
Liu, Ming-Sheng ;
Shang, Yin-Miao ;
Xu, Jun-Feng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,