Improved Bohr inequalities for certain class of harmonic univalent functions

被引:9
作者
Ahamed, Molla Basir [1 ]
Allu, Vasudevarao [1 ]
Halder, Himadri [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar, India
关键词
Analytic; univalent; harmonic functions; starlike; convex; close-to-convex functions; coefficient estimate; growth theorem; Bohr radius; POWER-SERIES; THEOREM; BASES;
D O I
10.1080/17476933.2021.1988583
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be the class of complex-valued harmonic mappings f = h + (g) over bar defined in the unit disk D := {z is an element of C : vertical bar z vertical bar < 1}, where h and g are analytic functions in D with the normalization h(0) = 0 = h'(0) - 1 and g(0) = 0. Let H-0 = {f = h + <(g)over bar> is an element of H: g'(0) = 0}. Let P-H(0)(M) := {f = h+ (g) over bar is an element of H-0 : Re (zh '' (Z))( > -M + vertical bar Zg ''(z)vertical bar, z is an element of D and M > 0}.) be the class of harmonic univalent mappings in the unit disk D, [Ghosh N, Allu V. On some subclasses of harmonic mappings. Bull Aust Math Soc. 2020;101:130-140.]. In this paper, we obtain the sharp Bohr-Rogosinski inequality, improved Bohr inequality, refined Bohr inequality and Bohr-type inequality for the class P-H(0)(M).
引用
收藏
页码:267 / 290
页数:24
相关论文
共 50 条
[21]   Bohr's inequalities for the analytic functions with lacunary series and harmonic functions [J].
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) :857-871
[22]   Bohr radius for locally univalent harmonic mappings [J].
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan ;
Shakirov, Nail .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) :1757-1768
[23]   Bohr Inequalities for Certain Classes of Harmonic Mappings [J].
Ahamed, Molla Basir ;
Ahammed, Sabir .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
[24]   Bohr's Phenomenon for Some Univalent Harmonic Functions [J].
Singla, Chinu ;
Gupta, Sushma ;
Singh, Sukhjit .
KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (02) :243-256
[25]   Bohr inequalities for the class of unimodular bounded functions on shifted disks [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao ;
Halder, Himadri .
BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 199
[26]   On Certain Bounds of Harmonic Univalent Functions [J].
Sakar, Fethiye Muege ;
Mishra, Omendra ;
Oros, Georgia Irina ;
Frasin, Basem Aref .
AXIOMS, 2025, 14 (06)
[27]   A CERTAIN CONVOLUTION APPROACH FOR SUBCLASSES OF UNIVALENT HARMONIC FUNCTIONS [J].
El-Ashwaw, R. M. ;
Aouf, M. K. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (03) :739-747
[28]   Bohr-Rogosinski type inequalities for concave univalent functions [J].
Allu, Vasudevarao ;
Arora, Vibhuti .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (01)
[29]   Improved Bohr's inequality for locally univalent harmonic mappings [J].
Evdoridis, Stavros ;
Ponnusamy, Saminathan ;
Rasila, Antti .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (01) :201-213
[30]   Partial sums of certain harmonic univalent functions [J].
Porwal S. .
Lobachevskii Journal of Mathematics, 2011, 32 (4) :366-375