Improved Bohr inequalities for certain class of harmonic univalent functions

被引:9
作者
Ahamed, Molla Basir [1 ]
Allu, Vasudevarao [1 ]
Halder, Himadri [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar, India
关键词
Analytic; univalent; harmonic functions; starlike; convex; close-to-convex functions; coefficient estimate; growth theorem; Bohr radius; POWER-SERIES; THEOREM; BASES;
D O I
10.1080/17476933.2021.1988583
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be the class of complex-valued harmonic mappings f = h + (g) over bar defined in the unit disk D := {z is an element of C : vertical bar z vertical bar < 1}, where h and g are analytic functions in D with the normalization h(0) = 0 = h'(0) - 1 and g(0) = 0. Let H-0 = {f = h + <(g)over bar> is an element of H: g'(0) = 0}. Let P-H(0)(M) := {f = h+ (g) over bar is an element of H-0 : Re (zh '' (Z))( > -M + vertical bar Zg ''(z)vertical bar, z is an element of D and M > 0}.) be the class of harmonic univalent mappings in the unit disk D, [Ghosh N, Allu V. On some subclasses of harmonic mappings. Bull Aust Math Soc. 2020;101:130-140.]. In this paper, we obtain the sharp Bohr-Rogosinski inequality, improved Bohr inequality, refined Bohr inequality and Bohr-type inequality for the class P-H(0)(M).
引用
收藏
页码:267 / 290
页数:24
相关论文
共 50 条
  • [21] Bohr's inequalities for the analytic functions with lacunary series and harmonic functions
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) : 857 - 871
  • [22] Bohr radius for locally univalent harmonic mappings
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    Shakirov, Nail
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) : 1757 - 1768
  • [23] Bohr Inequalities for Certain Classes of Harmonic Mappings
    Ahamed, Molla Basir
    Ahammed, Sabir
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [24] Bohr's Phenomenon for Some Univalent Harmonic Functions
    Singla, Chinu
    Gupta, Sushma
    Singh, Sukhjit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (02): : 243 - 256
  • [25] Bohr inequalities for the class of unimodular bounded functions on shifted disks
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 199
  • [26] A CERTAIN CONVOLUTION APPROACH FOR SUBCLASSES OF UNIVALENT HARMONIC FUNCTIONS
    El-Ashwaw, R. M.
    Aouf, M. K.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (03) : 739 - 747
  • [27] Bohr-Rogosinski type inequalities for concave univalent functions
    Allu, Vasudevarao
    Arora, Vibhuti
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (01)
  • [28] Improved Bohr's inequality for locally univalent harmonic mappings
    Evdoridis, Stavros
    Ponnusamy, Saminathan
    Rasila, Antti
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (01): : 201 - 213
  • [29] Partial sums of certain harmonic univalent functions
    Porwal S.
    Lobachevskii Journal of Mathematics, 2011, 32 (4) : 366 - 375
  • [30] Maximal Area Integral Problem for Certain Class of Univalent Analytic Functions
    Ponnusamy, Saminathan
    Sahoo, Swadesh Kumar
    Sharma, Navneet Lal
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) : 607 - 623