Improved Bohr inequalities for certain class of harmonic univalent functions

被引:9
作者
Ahamed, Molla Basir [1 ]
Allu, Vasudevarao [1 ]
Halder, Himadri [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar, India
关键词
Analytic; univalent; harmonic functions; starlike; convex; close-to-convex functions; coefficient estimate; growth theorem; Bohr radius; POWER-SERIES; THEOREM; BASES;
D O I
10.1080/17476933.2021.1988583
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be the class of complex-valued harmonic mappings f = h + (g) over bar defined in the unit disk D := {z is an element of C : vertical bar z vertical bar < 1}, where h and g are analytic functions in D with the normalization h(0) = 0 = h'(0) - 1 and g(0) = 0. Let H-0 = {f = h + <(g)over bar> is an element of H: g'(0) = 0}. Let P-H(0)(M) := {f = h+ (g) over bar is an element of H-0 : Re (zh '' (Z))( > -M + vertical bar Zg ''(z)vertical bar, z is an element of D and M > 0}.) be the class of harmonic univalent mappings in the unit disk D, [Ghosh N, Allu V. On some subclasses of harmonic mappings. Bull Aust Math Soc. 2020;101:130-140.]. In this paper, we obtain the sharp Bohr-Rogosinski inequality, improved Bohr inequality, refined Bohr inequality and Bohr-type inequality for the class P-H(0)(M).
引用
收藏
页码:267 / 290
页数:24
相关论文
共 21 条
[11]   BANACH-ALGEBRAS SATISFYING THE NON-UNITAL VON-NEUMANN-INEQUALITY [J].
DIXON, PG .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :359-362
[12]   ON SOME SUBCLASSES OF HARMONIC MAPPINGS [J].
Ghosh, Nirupam ;
Allu, Vasudevarao .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (01) :130-140
[13]  
Halder, BOHR INEQUALITY CERT
[14]   On the Bohr inequality for the Cesaro operator [J].
Kayumov, Ilgiz R. ;
Khammatova, Diana M. ;
Ponnusamy, Saminathan .
COMPTES RENDUS MATHEMATIQUE, 2020, 358 (05) :615-620
[15]   ON A POWERED BOHR INEQUALITY [J].
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 :301-310
[16]   Bohr's inequalities for the analytic functions with lacunary series and harmonic functions [J].
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) :857-871
[17]   Bohr radius for locally univalent harmonic mappings [J].
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan ;
Shakirov, Nail .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) :1757-1768
[18]   Bohr-type inequalities of analytic functions [J].
Liu, Ming-Sheng ;
Shang, Yin-Miao ;
Xu, Jun-Feng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[19]  
Ponnusamy, REFINED BOHR INEQUAL
[20]  
Ponnusamy, BOHR ROGOSINSKI RADI