Infinite families of t-designs from the binomial x4 + x3 over GF(2n)

被引:0
|
作者
Ling, Xin [1 ]
Xiang, Can [2 ]
机构
[1] China West Normal Univ, Sch Math & Informat, Nanchong 637002, Sichuan, Peoples R China
[2] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Polynomial; t-Design; Projective plane; Algebraic curves; Finite filed; CODES; 3-DESIGNS;
D O I
10.1007/s00200-021-00512-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Combinatorial t-designs have nice applications in coding theory, finite geometries and engineering areas. t-designs can be constructed from image sets of a fixed size of some special polynomials. This paper constructs t-designs from the quadratic polynomial x(4) + x(3) over GF(2(n)) and determine their parameters. We yield 2-(2(n), 3.2(n)-2, 3.2n-2(3.2(n-2) - 1)) designs for n even and 3-(2(n), 2(n-1), 2(n-1)(2(n-2) - 1)) designs for n odd.
引用
收藏
页码:411 / 421
页数:11