The multi-spacecraft high-energy solar particle event of 28 October 2021

被引:8
|
作者
Kouloumvakos, A. [1 ]
Papaioannou, A. [2 ]
Waterfall, C. O. G. [3 ]
Dalla, S. [3 ]
Vainio, R. [4 ]
Mason, G. M. [1 ]
Heber, B. [5 ]
Kuehl, P. [5 ]
Allen, R. C. [1 ]
Cohen, C. M. S. [6 ]
Ho, G. [1 ]
Anastasiadis, A. [2 ]
Rouillard, A. P. [7 ]
Rodriguez-Pacheco, J. [8 ]
Guo, J. [9 ,10 ]
Li, X. [9 ]
Horlock, M. [5 ]
Wimmer-Schweingruber, R. F. [5 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, 11101 Johns Hopkins Rd, Laurel, MD 20723 USA
[2] Natl Observ Athens, Space Applicat & Remote Sensing IAASARS, Inst Astron Astrophys, I Metaxa & Vas Pavlou St, Penteli 15236, Greece
[3] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England
[4] Univ Turku, Dept Phys & Astron, Turku 20500, Finland
[5] Christian Albrechts Univ Kiel, Inst Expt & Angew Phys, D-24118 Kiel, Germany
[6] CALTECH, Pasadena, CA 91125 USA
[7] Univ Toulouse III Paul Sabatier, CNRS, IRAP, F-31400 Toulouse, France
[8] Univ Alcala, Space Res Grp, Alcala De Henares 28805, Spain
[9] Univ Sci & Technol China, Sch Earth & Space Sci, Deep Space Explorat Lab, Hefei 230026, Anhui, Peoples R China
[10] USTC, CAS Ctr Excellence Comparat Planetol, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Sun: particle emission; Sun: coronal mass ejections (CMEs); GROUND-LEVEL ENHANCEMENT; CME-DRIVEN SHOCK; CORONAL MASS EJECTIONS; POWER-LAW FEATURE; AU; MAGNETIC CONNECTIVITY; PROTON ACCELERATION; RELEASE TIMES; FE/O RATIOS; CYCLE; 24;
D O I
10.1051/0004-6361/202346045
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We studied the first multi-spacecraft high-energy solar energetic particle (SEP) event of solar cycle 25, which triggered a ground level enhancement on 28 October 2021, using data from multiple observers (Parker Solar Probe, STEREO-A, Solar Orbiter, GOES, SOHO, BepiColombo, and the Mars Science Laboratory) that were widely distributed throughout the heliosphere and located at heliocentric distances ranging from 0.60 to 1.60AU. Methods. We present SEP observations at a broad energy range spanning from similar to 10 to 600MeV obtained from the di fferent instruments. We performed detail modelling of the shock wave and we derived the 3D distribution and temporal evolution of the shock parameters. We further investigated the magnetic connectivity of each observer to the solar surface and examined the shock's magnetic connection. We performed velocity dispersion analysis and time-shifting analysis to infer the SEP release time. We derived and present the peak proton flux spectra for all the above spacecraft and fluence spectra for major species recorded on board Solar Orbiter from the Suprathermal Ion Spectrograph (SIS). We performed 3D SEP propagation simulations to investigate the role of particle transport in the distribution of SEPs to distant magnetically connected observers. Results. Observations and modelling show that a strong shock wave formed promptly in the low corona. At the SEP release time windows, we find a connection with the shock for all the observers. PSP, STEREO-A, and Solar Orbiter were connected to strong shock regions with high Mach numbers (>4), whereas the Earth and other observers were connected to lower Mach numbers. The SEP spectral properties near Earth demonstrate two power laws, with a harder (softer) spectrum in the low-energy (high-energy) range. Composition observations from SIS (and near-Earth instruments) show no serious enhancement of flare-accelerated material. Conclusions. A possible scenario consistent with the observations and our analysis indicates that high-energy SEPs at PSP, STEREO-A, and Solar Orbiter were dominated by particle acceleration and injection by the shock, whereas high-energy SEPs that reached near-Earth space were associated with a weaker shock; it is likely that e fficient transport of particles from a wide injection source contributed to the observed high-energy SEPs. Our study cannot exclude a contribution from a flare-related process; however, composition observations show no evidence of an impulsive composition of suprathermals during the event, suggestive of a non-dominant flare-related process.
引用
收藏
页数:21
相关论文
共 49 条
  • [21] Major solar eruptions and high-energy particle events during solar cycle 24
    Nat Gopalswamy
    Hong Xie
    Sachiko Akiyama
    Pertti A Mäkelä
    Seiji Yashiro
    Earth, Planets and Space, 66
  • [22] Non-extensive statistical analysis of magnetic field during the March 2012 ICME event using a multi-spacecraft approach
    Pavlos, G. P.
    Malandraki, O. E.
    Pavlos, E. G.
    Iliopoulos, A. C.
    Karakatsanis, L. P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 464 : 149 - 181
  • [23] In situ multi-spacecraft and remote imaging observations of the first CME detected by Solar Orbiter and BepiColombo
    Davies, E. E.
    Mostl, C.
    Owens, M. J.
    Weiss, A. J.
    Amerstorfer, T.
    Hinterreiter, J.
    Bauer, M.
    Bailey, R. L.
    Reiss, M. A.
    Forsyth, R. J.
    Horbury, T. S.
    O'Brien, H.
    Evans, V
    Angelini, V
    Heyner, D.
    Richter, I
    Auster, H-U
    Magnes, W.
    Baumjohann, W.
    Fischer, D.
    Barnes, D.
    Davies, J. A.
    Harrison, R. A.
    ASTRONOMY & ASTROPHYSICS, 2021, 656
  • [24] Multi-spacecraft Study of the 8 November 2000 SEP Event: Electron Injection Histories 100° Apart
    N. Agueda
    D. Lario
    V. Ontiveros
    E. Kilpua
    B. Sanahuja
    R. Vainio
    Solar Physics, 2012, 281 : 319 - 331
  • [25] PAMELA'S MEASUREMENTS OF MAGNETOSPHERIC EFFECTS ON HIGH-ENERGY SOLAR PARTICLES
    Adriani, O.
    Barbarino, G. C.
    Bazilevskaya, G. A.
    Bellotti, R.
    Boezio, M.
    Bogomolov, E. A.
    Bongi, M.
    Bonvicini, V.
    Bottai, S.
    Bravar, U.
    Bruno, A.
    Cafagna, F.
    Campana, D.
    Carbone, R.
    Carlson, P.
    Casolino, M.
    Castellini, G.
    Christian, E. R.
    De Donato, C.
    de Nolfo, G. A.
    De Santis, C.
    De Simone, N.
    Di Felice, V.
    Formato, V.
    Galper, A. M.
    Karelin, A. V.
    Koldashov, S. V.
    Koldobskiy, S.
    Krutkov, S. Y.
    Kvashnin, A. N.
    Lee, M.
    Leonov, A.
    Malakhov, V.
    Marcelli, L.
    Martucci, M.
    Mayorov, A. G.
    Menn, W.
    Merge, M.
    Mikhailov, V. V.
    Mocchiutti, E.
    Monaco, A.
    Mori, N.
    Munini, R.
    Osteria, G.
    Palma, F.
    Panico, B.
    Papini, P.
    Pearce, M.
    Picozza, P.
    Ricci, M.
    ASTROPHYSICAL JOURNAL LETTERS, 2015, 801 (01)
  • [26] The origin of high-energy 3He-rich solar particle events
    Kocharov, L
    Torsti, J
    ASTROPHYSICAL JOURNAL, 2003, 586 (02) : 1430 - 1435
  • [27] Why is solar cycle 24 an inefficient producer of high-energy particle events?
    Vainio, Rami
    Raukunen, Osku
    Tylka, Allan J.
    Dietrich, William F.
    Afanasiev, Alexandr
    ASTRONOMY & ASTROPHYSICS, 2017, 604
  • [28] Ion anisotropy and high-energy variability of large solar particle events: A comparative study
    Tan, Lun C.
    Reames, Donald V.
    Ng, Chee K.
    ASTROPHYSICAL JOURNAL, 2008, 678 (02) : 1471 - 1479
  • [29] Transport Modeling of Interplanetary Electrons in the 2002 October 20 Solar Particle Event
    Droege, W.
    Kartavykh, Y. Y.
    Wang, L.
    Telloni, D.
    Bruno, R.
    ASTROPHYSICAL JOURNAL, 2018, 869 (02)
  • [30] Eruptive Flare, CME, and Shock Wave in the 25 August 2001 High-Energy Solar Event
    Grechnev, V. V.
    Kochanov, A. A.
    Uralov, A. M.
    SOLAR PHYSICS, 2023, 298 (03)