A new distance transformation method of estimating domain integrals directly in boundary integral equation for transient heat conduction problems

被引:3
|
作者
Dong, Yunqiao [1 ]
Sun, Hengbo [1 ]
Tan, Zhengxu [1 ]
机构
[1] Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
Distance transformation; Domain integrals; Boundary integral equation; Transient heat conduction; ELEMENT-METHOD; NUMERICAL EVALUATION; GENERAL ALGORITHM; SINGULAR-INTEGRALS; SOLIDS; BEM;
D O I
10.1016/j.enganabound.2023.12.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate estimation of domain integrals is of crucial importance for the pseudo-initial condition method applied in transient heat conduction analysis. When small time step is used, the integrand of the domain integral changes dramatically and is close to singular. A straightforward evaluation of the domain integrals using Gaussian quadrature may produce large errors. To improve the computational accuracy of two-dimensional domain integrals in boundary integral equation, a new distance transformation method is presented in this paper. The proposed method takes the time step as the transformation parameter, implementing the new transformation in the radial direction directly. With the new distance transformation method, the integrand of the domain integral can be smoother, thus more accurate results can be obtained. Numerical examples have demonstrated the efficiency and accuracy of the proposed method.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条
  • [21] Time-domain boundary integral equation modeling of heat transmission problems
    Qiu, Tianyu
    Rieder, Alexander
    Sayas, Francisco-Javier
    Zhang, Shougui
    NUMERISCHE MATHEMATIK, 2019, 143 (01) : 223 - 259
  • [22] Isogeometric configuration design optimization of heat conduction problems using boundary integral equation
    Yoon, Minho
    Choi, Myung-Jin
    Cho, Seonho
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 89 : 937 - 949
  • [23] ISOGEOMETRIC CONFIGURATION DESIGN OPTIMIZATION OF HEAT CONDUCTION PROBLEMS USING BOUNDARY INTEGRAL EQUATION
    Yoon, Minho
    Choi, Myung-Jin
    Cho, Seonho
    M2D2015: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS IN DESIGN, 2015, : 1565 - 1566
  • [24] A Meshless Boundary Element Method Formulation for Transient Heat Conduction Problems with Heat Sources
    Hematiyan, M. R.
    Karami, G.
    SCIENTIA IRANICA, 2008, 15 (03) : 348 - 359
  • [25] A boundary integral equation method in the frequency domain for cracks under transient loading
    M. V. Menshykova
    O. V. Menshykov
    I. A. Guz
    M. Wuensche
    Ch. Zhang
    Acta Mechanica, 2016, 227 : 3305 - 3314
  • [26] A boundary integral equation method in the frequency domain for cracks under transient loading
    Menshykova, M. V.
    Menshykov, O. V.
    Guz, I. A.
    Wuensche, M.
    Zhang, Ch.
    ACTA MECHANICA, 2016, 227 (11) : 3305 - 3314
  • [27] BOUNDARY TEMPERATURE RECONSTRUCTION IN AN INVERSE HEAT CONDUCTION PROBLEM USING BOUNDARY INTEGRAL EQUATION METHOD
    Garshasbi, M.
    Hassani, F.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (05): : 1039 - 1056
  • [28] Transient heat conduction analysis in a 3D axisymmetric body by the meshless local boundary integral equation method
    Sladek, J
    Sladek, V
    Zhang, C
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2131 - 2134
  • [29] A meshless local boundary integral equation method for solving transient elastodynamic problems
    Sellountos, EJ
    Polyzos, D
    COMPUTATIONAL MECHANICS, 2005, 35 (04) : 265 - 276
  • [30] A meshless local boundary integral equation method for solving transient elastodynamic problems
    E. J. Sellountos
    D. Polyzos
    Computational Mechanics, 2005, 35 : 265 - 276