Generating fine-grained surrogate temporal networks

被引:11
作者
Longa, A. [1 ,2 ]
Cencetti, G. [1 ,3 ]
Lehmann, S. [4 ,5 ]
Passerini, A. [2 ]
Lepri, B. [1 ]
机构
[1] Fdn Bruno Kessler, Trento, Italy
[2] Univ Trento, Trento, Italy
[3] Univ Toulon & Var, Aix Marseille Univ, CNRS, Marseille, France
[4] Tecn Univ Denmark, Kongens Lyngby, Denmark
[5] Copenhagen Ctr Social Data Sci, Copenhagen, Denmark
基金
欧盟地平线“2020”;
关键词
INFORMATION; EMERGENCE; EVOLUTION; GRAPHS; RISK;
D O I
10.1038/s42005-023-01517-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Temporal networks are essential for modeling and understanding time-dependent systems, from social interactions to biological systems. However, real-world data to construct meaningful temporal networks are expensive to collect or unshareable due to privacy concerns. Generating arbitrarily large and anonymized synthetic graphs with the properties of real-world networks, namely surrogate networks, is a potential way to bypass the problem. However, it is not easy to build surrogate temporal networks which do not lack information on the temporal and/or topological properties of the input network and their correlations. Here, we propose a simple and efficient method that decomposes the input network into star-like structures evolving in time, used in turn to generate a surrogate temporal network. The model is compared with state-of-the-art models in terms of similarity of the generated networks with the original ones, showing its effectiveness and its efficiency in terms of execution time. The simplicity of the algorithm makes it interpretable, extendable and scalable. Surrogate networks are synthetic alternatives to real world networks that avoid expensive data collection and privacy issues, but they often lack information on the temporal or topological properties of the input network. The authors propose a method to construct realistic surrogate network, outperforming the existing ones in accuracy and execution time.
引用
收藏
页数:14
相关论文
共 70 条
[61]   Estimating Potential Infection Transmission Routes in Hospital Wards Using Wearable Proximity Sensors [J].
Vanhems, Philippe ;
Barrat, Alain ;
Cattuto, Ciro ;
Pinton, Jean-Francois ;
Khanafer, Nagham ;
Regis, Corinne ;
Kim, Byeul-a ;
Comte, Brigitte ;
Voirin, Nicolas .
PLOS ONE, 2013, 8 (09)
[62]   Risk of Influenza-Like Illness in an Acute Health Care Setting During Community Influenza Epidemics in 2004-2005, 2005-2006, and 2006-2007 [J].
Vanhems, Philippe ;
Voirin, Nicolas ;
Roche, Sylvain ;
Escuret, Vanessa ;
Regis, Corinne ;
Gorain, Christine ;
Pires-Cronenberger, Silene ;
Giard, Marine ;
Lina, Bruno ;
Najioullah, Fatiha ;
Barret, Beatrice ;
Pollissard, Laurence ;
David, Sandra ;
Crozet, Marie-Noelle ;
Comte, Brigitte ;
Hirschel, Bernard ;
Ecochard, Rene .
ARCHIVES OF INTERNAL MEDICINE, 2011, 171 (02) :151-157
[63]   How memory generates heterogeneous dynamics in temporal networks [J].
Vestergaard, Christian L. ;
Genois, Mathieu ;
Barrat, Alain .
PHYSICAL REVIEW E, 2014, 90 (04)
[64]  
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
[65]  
Xu L, 2019, ADV NEUR IN, V32
[66]   DYMOND: DYnamic MOtif-NoDes Network Generative Model [J].
Zeno, Giselle ;
La Fond, Timothy ;
Neville, Jennifer .
PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, :718-729
[67]   Random graph models for dynamic networks [J].
Zhang, Xiao ;
Moore, Cristopher ;
Newman, Mark E. J. .
EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (10)
[68]   Social network dynamics of face-to-face interactions [J].
Zhao, Kun ;
Stehle, Juliette ;
Bianconi, Ginestra ;
Barrat, Alain .
PHYSICAL REVIEW E, 2011, 83 (05)
[69]   A Data-Driven Graph Generative Model for Temporal Interaction Networks [J].
Zhou, Dawei ;
Zheng, Lecheng ;
Han, Jiawei ;
He, Jingrui .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :401-411
[70]   Reference Interval Estimation from Mixed Distributions using Truncation Points and the Kolmogorov-Smirnov Distance (kosmic) [J].
Zierk, Jakob ;
Arzideh, Farhad ;
Kapsner, Lorenz A. ;
Prokosch, Hans-Ulrich ;
Metzler, Markus ;
Rauh, Manfred .
SCIENTIFIC REPORTS, 2020, 10 (01)