Numerical study on the gasification and shape evolution of single rod-shaped biomass char particle in a hot CO2/O2/H2O atmosphere

被引:0
|
作者
Shang, Fei [1 ]
Ge, Zhiwei [1 ]
Wang, Yu [1 ]
Zhou, Chenchen [1 ]
Guo, Shenghui [1 ]
Ren, Changyifan [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
关键词
Biomass; CO; 2; gasification; Char conversion; Shape evolution; Dynamic mesh; STAGNANT BOUNDARY-LAYER; CO2; GASIFICATION; CARBON PARTICLE; PYROLYSIS; REACTIVITY; DIFFUSION; FORCE; STEAM; WATER;
D O I
10.1016/j.energy.2023.129942
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the industrial systems for CO2 gasification of biomass, a large amount of feedstock is presented as rod-shaped particles at different scales. The evolution of such particles during gasification remains unclear. This work investigated the overall gasification characteristics of single rod-shaped biomass char particle in a hot CO2/O2/ H2O atmosphere and the intrinsic link between shape evolution and gasification characteristics. The overall gasification characteristics of the particle are discussed, including the influence of various inlet parameters and geometric parameters. The reaction intensity on the particle surface shows significant non-uniformity, which increases with the particle Reynolds number and oxygen concentration but decreases with increasing inlet temperature. The more the particle shape resembles a rod (aspect ratio ranging from 3:2 to 3:1), the more pronounced the non-uniformity of the surface temperature becomes (increasing by over five times). The intrinsic link between particle reaction properties and shape evolution was discussed using the dynamic mesh method. The shrinkage rate at the end of the particle is 1.73 times faster than that at the middle part. The non-uniformity of the surface temperature decreases by 6 % within 5 s, indicating that as the reaction proceeds, the reaction intensity on the particle surface tends to become more uniform.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Numerical study on a single char particle gasification considering Stefan flow effects in a hot CO2/O2/H2O atmosphere
    Shang, Fei
    Ge, Zhiwei
    Wang, Yu
    Zhou, Chenchen
    Guo, Shenghui
    Ren, Changyifan
    FUEL, 2022, 324
  • [2] Influence of temperature and particle size on the single and mixed atmosphere gasification of biomass char with H2O and CO2
    Guizani, C.
    Sanz, F. J. Escudero
    Salvador, S.
    FUEL PROCESSING TECHNOLOGY, 2015, 134 : 175 - 188
  • [3] Experimental study on thermal conversion characteristics of char in a pressurized O2/CO2/H2O atmosphere
    Bai, Chenxi
    Xu, Sicong
    Chen, Kun
    Zhang, Wenda
    Li, Yukai
    Zhao, Yijun
    Sun, Shaozeng
    Feng, Dongdong
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 116
  • [4] Numerical study of a reacting single coal char particle with different pore structures moving in a hot O2/CO2 atmosphere
    Xue, Zhicun
    Guo, Qinghua
    Gong, Yan
    Xu, Jianliang
    Yu, Guangsuo
    FUEL, 2017, 206 : 381 - 389
  • [5] Gasification of Wood Char in Single and Mixed Atmospheres of H2O and CO2
    Tagutchou, J. P.
    Van de Steene, L.
    Sanz, F. J. Escudero
    Salvador, S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2013, 35 (13) : 1266 - 1276
  • [6] Kinetics of rice husk char gasification in an H2O or a CO2 atmosphere
    Hong Nam Nguyen
    Van De Steene, Laurent
    Duc Dung Le
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (14) : 1701 - 1713
  • [7] Desorption kinetics of CO in char oxidation and gasification in O2, CO2 and H2O
    Karlstrom, Oskar
    Brink, Anders
    Hupa, Mikko
    COMBUSTION AND FLAME, 2015, 162 (03) : 788 - 796
  • [8] Conversion characteristics of a single coal char particle with high porosity moving in a hot O2/CO2 atmosphere
    Xue, Zhicun
    Gong, Yan
    Guo, Qinghua
    Wang, Yifei
    Yu, Guangsuo
    FUEL, 2019, 256
  • [9] Energy conversion of biomass char: Oxidation rates in mixtures of O2/CO2/H2O
    Karlstrom, Oskar
    Hupa, Leena
    ENERGY, 2019, 181 : 615 - 624
  • [10] Fluidized bed gasification of lignite char with CO2 and H2O: A kinetic study
    Scala, Fabrizio
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 : 2839 - 2846