Molecular mechanism of Yi-Qi-Yang-Yin-Ye against obesity in rats using network pharmacology, molecular docking, and molecular dynamics simulations

被引:6
|
作者
Sun, Feifei [1 ,2 ]
Liu, Jinde [1 ]
Xu, Jingfei [1 ]
Tariq, Ali [3 ]
Wu, Yongning [2 ]
Li, Lin [1 ]
机构
[1] Anhui Agr Univ, Coll Anim Sci & Technol, Anim Derived Food Safety Innovat Team, Hefei 230036, Peoples R China
[2] Chinese Acad Med Sci, NHC Key Lab Food Safety Risk Assessment, China Natl Ctr Food Safety Risk Assessment, Res Unit 2019RU014, Beijing, Peoples R China
[3] Univ Agr, Coll Vet Sci, Peshawar, Pakistan
基金
中国国家自然科学基金;
关键词
Natural products; Yi-Qi-Yang-Yin-Ye; Obesity; Network pharmacology; Molecular docking; Molecular dynamics simulations; INSULIN-RESISTANCE; ADIPOSE-TISSUE; KINASE; INFLAMMATION; QUERCETIN; PATHWAYS; PROFILE;
D O I
10.1016/j.arabjc.2023.105390
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increasing prevalence of obesity globally, which as well as affecting people's daily lives and increasing the risk of obesity complications, also threatens the health of animal organisms simultaneously. It's been reported that Yi-Qi-Yang-Yin-Ye had remarkable efficacy in the treatment of obesity. The specific underlying mechanism of action of Yi-Qi-Yang-Yin-Ye in treating obesity, however, remains ambiguous. Therefore, the innovative approach, which is network pharmacology combined with molecular docking and molecular dynamics simulations, was employed in the current research to explore the potential mechanism and promote further development in the treatment of obesity. The active ingredients and related targets of Yi-Qi-Yang-Yin-Ye and related targets of obesity were summarized from extensive public databases. Furthermore, network topology analysis and pathway enrichment analysis were performed to explore the complicated interactions between drug and targets. Finally, accurate validation methods composed of molecular docking and molecular dynamics simulations were conducted to elucidate the binding affinity of Yi-Qi-Yang-Yin-Ye with obesity-related targets. As a result, 13 main active ingredients and 5 core targets of Yi-Qi-Yang-Yin-Ye against obesity in rats were acquired through primary screening of network topology analysis. Pathway enrichment analysis demonstrated that intersectional targets were involved in multiple signaling pathways, where PI3K-Akt signaling pathway, MAPK signaling pathway, and Insulin resistance were the main pathways of Yi-Qi-Yang-Yin-Ye in treating obesity in rats. Finally, molecular docking indicated that the seven critical active ingredients displayed great binding affinity to the hub targets. Furthermore, molecular dynamics simulations further screened and obtained that five critical active ingredients acting on the Mapk1 target for Yi-Qi-Yang-Yin-Ye against obesity in rats. The innovative approach and the results achieved have further contributed to and revealed the molecular mechanisms for treating obesity, providing an alternative for treating obesity in animals and humans.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Investigating the molecular mechanism of iguratimod act on SLE using network pharmacology and molecular docking analysis
    Zeng, Huiqiong
    Chen, Shuai
    Lu, Xiaoping
    Yan, Zhenbo
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [12] Exploring the molecular mechanism of ginseng against anthracycline-induced cardiotoxicity based on network pharmacology, molecular docking and molecular dynamics simulation
    Xie, Lin
    Liu, Hanze
    Zhang, Ke
    Pan, Yijun
    Chen, Mengyao
    Xue, Xiangyue
    Wan, Guoxing
    HEREDITAS, 2024, 161 (01):
  • [13] Uncovering the molecular mechanism of Gynostemma pentaphyllum (Thunb.) Makino against breast cancer using network pharmacology and molecular docking
    Wang, Wen-Xiang
    He, Xiao-Yan
    Yi, Dong-Yang
    Tan, Xiao-Yan
    Wu, Li-Juan
    Li, Ning
    Feng, Bin-Bin
    MEDICINE, 2022, 101 (49) : E32165
  • [14] Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation to Elucidate the Molecular Targets and Potential Mechanism of Phoenix dactylifera (Ajwa Dates) against Candidiasis
    Adnan, Mohd
    Siddiqui, Arif Jamal
    Ashraf, Syed Amir
    Bardakci, Fevzi
    Alreshidi, Mousa
    Badraoui, Riadh
    Noumi, Emira
    Tepe, Bektas
    Sachidanandan, Manojkumar
    Patel, Mitesh
    PATHOGENS, 2023, 12 (11):
  • [15] Exploring the Mechanism of Hawthorn Leaves Against Coronary Heart Disease Using Network Pharmacology and Molecular Docking
    Ding, Jie
    Wu, Jun
    Wei, Haoran
    Li, Sui
    Huang, Man
    Wang, Yan
    Fang, Qin
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [16] Unraveling the Mechanism of Zhibaidihuang Decoction against IgA Nephropathy Using Network Pharmacology and Molecular Docking Analyses
    Deng, Xiaoqi
    Luo, Yu
    Lu, Meiqi
    Guan, Tianjun
    Li, Yu
    Guo, Xiaodan
    TOHOKU JOURNAL OF EXPERIMENTAL MEDICINE, 2023, 259 (01): : 37 - 47
  • [17] Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking
    Xie, Chenchen
    Tang, Hao
    Liu, Gang
    Li, Changqing
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [18] Network Pharmacology and Molecular Docking to Elucidate the Potential Mechanism of Ligusticum Chuanxiong Against Osteoarthritis
    Xiang, Cheng
    Liao, Yilin
    Chen, Zhuoyuan
    Xiao, Bo
    Zhao, Ziyue
    Li, Aoyu
    Xia, Yu
    Wang, Pingxiao
    Li, Hui
    Xiao, Tao
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [19] Exploring the Effect and Mechanism of DaYuan Yin Against Acute Lung Injury by Network Pharmacology, Molecular Docking, and Experimental Validation
    Zhang, Lei
    Zhu, Wei
    Zhang, Cong
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2024, 18 : 5541 - 5561
  • [20] Unraveling the mechanism of tetrandrine combined with Buyang Huanwu Decoction against silicosis using network pharmacology and molecular docking analyses
    Li, Yi
    He, Song
    Zhao, Youdan
    Jiang, Hongzhan
    Lyu, Zhi
    MEDICINE, 2023, 102 (32) : E34716