A Seven-Parameter Spectral/hp Finite Element Model for the Linear Vibration Analysis of Functionally Graded Shells with Nonuniform Thickness

被引:1
作者
Murillo, Carlos Enrique Valencia [1 ]
Rivera, Miguel Ernesto Gutierrez [1 ]
Samano, Nicolas Flores [1 ]
Garcia, Luis David Celaya [1 ]
机构
[1] Univ Guanajuato, Dept Mech Engn, Salamanca 36885, Guanajuato, Mexico
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 20期
关键词
functionally graded material; seven-parameter shell formulation; finite element model; natural frequencies; numerical results; thickness variation; SHEAR DEFORMATION-THEORY; ANNULAR PLATES; FORMULATION; COMPOSITE; STRESS;
D O I
10.3390/app132011540
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This contribution presents a finite element shell model capable of performing linear vibration analyses of shell-type structures made of functionally graded material (FGM). The model is based on the seven-parameter spectral/hp finite element formulation, which allows the analysis ofFG shells of either uniform or nonuniform thickness. Equations of motion are derived using the Hamilton's principle and the material properties of the constituents are considered to follow a power-law volume distribution through the thickness direction. The verification of the present model is carried out by comparing with numerical results available in the literature, and with numerical simulations performed in a commercial software. To demonstrate the capabilities of the present formulation, the free vibration response of different shell structures, with nonuniform thickness, to the variation of the geometrical parameters (e.g., radius-to-thickness ratio) and the mechanical properties is reported.
引用
收藏
页数:26
相关论文
共 56 条
  • [21] Three-dimensional vibration analysis of paraboloidal shells
    Leissa, AW
    Kang, JH
    [J]. JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2002, 45 (01) : 2 - 7
  • [22] Free vibration analysis of axisymmetric functionally graded doubly-curved shells with un-uniform thickness distribution based on Ritz method
    Li, Haichao
    Pang, Fuzhen
    Gong, Qingtao
    Teng, Yao
    [J]. COMPOSITE STRUCTURES, 2019, 225
  • [23] Mahamood RM, 2017, TOP MINING METAL MAT, P1, DOI 10.1007/978-3-319-53756-6
  • [24] Free Vibration Analysis of a Functionally Graded Plate by Finite Element Method
    Marzavan, Silvia
    Nastasescu, Vasile
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2023, 14 (08)
  • [25] Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory
    Matsunaga, Hiroyuki
    [J]. COMPOSITE STRUCTURES, 2009, 88 (04) : 519 - 531
  • [26] Vibrations of functionally graded material axisymmetric shells
    Moita, Jose S.
    Araujo, Aurelio L.
    Correia, Victor Franco
    Mota Soares, Cristovao M.
    [J]. COMPOSITE STRUCTURES, 2020, 248
  • [27] Free vibration of functionally graded conical shell
    Mouli, B. Chandra
    Kar, V. R.
    Ramji, K.
    Rajesh, M.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2018, 5 (06) : 14302 - 14308
  • [28] Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique
    Neves, A. M. A.
    Ferreira, A. J. M.
    Carrera, E.
    Cinefra, M.
    Roque, C. M. C.
    Jorge, R. M. N.
    Soares, C. M. M.
    [J]. COMPOSITES PART B-ENGINEERING, 2013, 44 (01) : 657 - 674
  • [29] Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations
    Neves, A. M. A.
    Ferreira, A. J. M.
    Carrera, E.
    Cinefra, M.
    Roque, C. M. C.
    Jorge, R. M. N.
    Soares, C. M. M.
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2013, 37 : 24 - 34
  • [30] A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures
    Payette, G. S.
    Reddy, J. N.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 278 : 664 - 704